
Visual Exploration of Large-Scale Evolving Software

Richard Wettel
REVEAL@Faculty of Informatics
University of Lugano, Switzerland

Abstract

The comprehensive understanding of today’s software
systems is a daunting activity, because of the sheer size and
complexity that such systems exhibit. Moreover, software
systems evolve, which dramatically increases the amount
of data one needs to analyze in order to gain insights into
such systems. Indeed, software complexity is recognized as
one of the major challenges to the development and main-
tenance of industrial-size software projects.

Our vision is a 3D visualization approach which helps
software engineers build knowledge about their systems. We
settled on an intuitive metaphor, which depicts software sys-
tems as cities. To validate the ideas emerging from our re-
search, we implemented a tool called CodeCity. We devised
a set of visualization techniques to support tasks related
to program comprehension, design quality assessment, and
evolution analysis, and applied them on large open-source
systems written in Java, C++, or Smalltalk. Our next re-
search goals are enriching our metaphor with meaningful
representations for relations and encoding higher-level in-
formation.

1. Introduction

Understanding today’s software systems is a daunting
and costly activity. While software maintenance claims up
to 90% of the cost of a software system [7], more than half
of the time dedicated to it is spent in program comprehen-
sion tasks [21]. This is due to the complexity of the systems,
i.e., one of the major challenges of industrial-size software,
and to their sheer size. Moreover, because of the evolution-
ary nature of software [12], the amount of data one needs to
analyze when it comes to several versions of such a system
is overwhelming. In this context, tool support is essential.
An efficient means for synthesizing large amounts of data
and for building a mental model of a software system is
visualization. We propose an integrated software analysis
environment based on a city metaphor, described next.

2. The City Metaphor

In the context of the EvoSpaces1 project, which aims
at exploiting multi-dimensional navigation spaces to visu-
alize evolving software, we have experimented with several
metaphors [3] to provide some tangibility to the abstract na-
ture of software. We settled on a 3D city metaphor [17], for
it confers a complex exploratory environment with a clear
notion of locality, which counteracts disorientation (an open
challenge in 3D visualization). This led to the adoption of
the metaphor in the project’s supporting tool [1].

height
metric

width

metric

Packages
(hierarchy)

lengthmetric
color metric

color

metric
Classes

Figure 1. Principles of our city metaphor

We represent classes as buildings and packages as the
districts in which the buildings reside (See Figure 1). The
visual properties of the city artifacts depict metric values.
Our typical configuration is: for classes, the number of
methods (NOM) metric mapped on the buildings’ height
and the number of attributes (NOA) on their base size, and
for packages the nesting level mapped on the districts’ color
saturation (i.e., root packages are dark, while deeply nested
packages are light-colored districts). The package hierarchy
is thus reflected by the city’s district structure.

1http://www.inf.unisi.ch/projects/evospaces

http://www.inf.unisi.ch/projects/evospaces

3. Approach and Validation

We applied our approach in 3 contexts: program compre-
hension, evolution analysis, and design quality assessment.

3.1. Program Comprehension

We conducted a program comprehension experiment,
described in detail in [16], on ArgoUML, a 140 kLOC Java
system. The overview of the city of ArgoUML shows the
system’s structure and points out the outliers in terms of the
mapped metrics (Figure 2). We identified three archetypes
of prominent buildings: skyscrapers (i.e., classes with many
methods and few attributes), parking lots (i.e., classes with
few methods and many attributes), and massive buildings
(i.e., classes with both many methods and attributes).

org.argouml.reveng.java

JavaRecognizer
NOA 79, NOM 176CPPParser

NOA 85, NOM 204

FacadeMDRImpl
NOA 3, NOM 349

Facade
NOA 1, NOM 337

JavaTokenTypes
NOA 173, NOM 0STDCTokenTypes

NOA 152, NOM 0

org.argouml.language.java.generator

JavaRecognizer
NOA 24, NOM 91

JavaTokenTypes
NOA 146, NOM 0

Figure 2. The city of ArgoUML

The city exhibits an interesting symbiosis: parking lots
closely-located to massive buildings. After inspecting these
entities and their relations, we learned that the three parking
lots are interfaces defining many attributes, while the mas-
sive buildings are parser classes, which use the attributes
(i.e., tokens) defined in these interfaces. Besides the pair
for C++ code (i.e.,STDCTokenTypes and CPPParser), there
are two homonymous pairs for Java code (JavaTokenTypes
and JavaRecognizer) defined in different packages. Apart
from names, the pairs also share large amounts of dupli-
cated code, which can be refactored. Our hypothesis at the
time was that one pair was gradually replacing the other,
with both co-existing in the system during the process.

Another striking pair is composed of the two skyscrapers
representing the interface Facade and the class FacadeM-
DRImpl, which dominate the city’s top. A closer look re-
veals an odd situation: there is no other class which imple-
ments the large number of methods defined in the Facade
interface (i.e., over 300). Whether there were other imple-
mentors in the past is again a matter of system evolution.

3.2. Evolution Analysis

The unanswered questions left behind by the previous
experiment only strengthened our belief that the history of
a software system carries important insights, which cannot
be revealed outside the evolutionary context. Therefore, we
devised a number of visual techniques for evolution analysis
[19]. The one called time travel allows stepping through
the versions of the system and observing the changes inside
the city. To enable such observations we ensure consistent
locality, i.e., each artifact representing a software entity is
assigned a lifetime real-estate in the city. The empty spaces
left behind by the removal of entities are never reallocated.

0.10.1
Sept. 2002

0.12
Aug. 2003

0.14
Dec. 2003

0.16
Jul. 2004

0.18.1
Apr. 2005

0.20
Feb. 2006

0.22
Aug. 2006

0.23.4
Oct. 2006

ModelFacade ModelFacade

Facade

NSUMLModelFacade
Facade

NSUMLModelFacade

FacadeMDRImpl

Facade
FacadeMDRImpl

Figure 3. Time travel in ArgoUML’s history

Traveling through ArgoUML’s history (Figure 3) sheds
light on the case of the only implementing class of the
Facade interface. In release 0.14 the large ModelFacade
class appears, then explodes in size in 0.16. Release 0.18.1
carries the signs of a large refactoring: The removal of
ModelFacade coincides with the appearance of an interface
(i.e.,Facade) and a class (i.e.,NSUMLModelFacade) of the
same size. Our hypothesis is confirmed by version 0.20,
when a second implementing class (i.e.,FacadeMDRImpl)
appears, justifying the existence of the interface. In re-
lease 0.22, the first implementor class is removed, leaving
FacadeMDRImpl the only implementor of Facade to these
days. A developer of ArgoUML confirmed our hypothesis.

By applying another technique called age map, discussed
in [19], we learned a fact that discards our other hypothesis:
the two pairs called JavaTokenTypes and JavaRecognizer
were part of the system from the very beginning.

3.3. Assessing the Quality of the Design

Although software metrics can hint to de sign problems,
relying solely on metrics is not accurate enough and often
leads to false results. We base our design quality assessment
on the results of applying detection strategies [14] to reveal
design disharmonies [11]. Our disharmony map technique
[20] integrates the design problem data in the code cities,
which allows us to localize the affected elements and as-
sess the distribution of design disharmonies throughout the
system. Inspired by disease maps, we assign vivid colors
to the design harmony breakers and shades of gray to the
unaffected entities. This enables us to focus on the design
disharmonies in the presence of a non-distracting context.

JavaRecognizer
NOA 79, NOM 176

SimpleByteLexer$CPPParser
NOA 85, NOM 204

org.argouml.diagram.ui

FigNodeModelElement
NOA 39, NOM 98

FigEdgeModelElement
NOA 13, NOM 76

FigAssociation
NOA 8, NOM 17

org.argouml.uml.notation.uml org.argouml.model.mdr

FacadeMDRImpl
NOA 3, NOM 349

CoreHelperMDRImpl
NOA 2, NOM 154

Facade
NOA 1, NOM 337

UmlFactoryMDRImpl
NOA 9, NOM 22

Figure 4. ArgoUML’s design problems

ArgoUML has 17 Brain Classes (yellow) and 33 God
Classes (blue), 9 of which are affected by both dishar-
monies (red), and 17 Data Classes (green), distributed
rather sparsely throughout the system, as Figure 4 shows.
Some of the disharmonious classes are not surprising, given
their high number of methods, such as the massive JavaRec-
ognizer and CPPParser, which both happen to be gen-
erated classes that do not require manual maintenance.
Package org.argouml.model.mdr hosts many problematic
classes, including the God Class FacadeMDRImpl (3 at-
tributes, 349 methods). A less obvious example are the
3 God Classes FigNodeModelElement (39 attributes, 98
methods), FigEdgeModelElement (13 attributes, 76 meth-
ods) and FigAssociation (8 attributes, 17 methods), which
are core classes of the system and thus subjected to con-
tinuous maintenance. A disturbing case appears in pack-
age org.argouml.uml.notation.uml with one rather small and
three barely visible God & Brain Classes: although the
four classes have 8 to 24 methods, they contain incredible
amounts of code (i.e., 450 to 1,538 LOC), which explains
why they are detected as design harmony breakers.

3.4. Experimental Results

During the program comprehension experiment, our ap-
proach brought to light a number of interesting cases, which
represent potential starting points for upcoming mainte-
nance efforts. However, tracking the origins of a problem
requires observing the system’s history. The evolutionary
visualizations helped us (in)validate our initial hypotheses,
before the “reality check” with the system developers. Fi-
nally, the disharmony maps pointed out further candidates
for refactoring, in the form of actual design problems. Over-
all, the insights obtained with our complementary visualiza-
tions lead to a holistic view of the system.

4. Related Work

3D visualizations have been around for more than a
decade [15]. Over the last years, several approaches based
on a city metaphor have been proposed. Knight et al. [8]
and Charter et al. [4] use a city metaphor to explore soft-
ware systems, but at a finer granularity level (i.e., methods
are buildings and classes as districts), which does not scale.

Balzer et al. propose a very interesting type of 3D visu-
alization, called software landscapes, [2] to visualize single
versions of software systems. The drawback of their ap-
proach is that it does not visualize system evolution. More-
over, due to their level-of-detail-based navigation, it is not
able to produce a “big picture” of the system.

In their approach based on poly cylinders, Marcus et al.
[13] use the third dimension of this city-like metaphor to
map more metrics on the artifacts. The major advantage
compared to this approach is the ability of our approach to
go beyond single version analysis and to include additional
perspectives, such as the disharmony map.

Langelier et al. [9] have a similar approach to ours.
They use 3D visualizations to display structural informa-
tion by representing classes as boxes with metrics mapped
on height, color and twist, and packages as borders around
the classes placed using a tree layout or a sunburst layout.
These layouts, while very appealing, do not enable an easy
interpretation of the package hierarchy as our layout does.
The authors also target design problems, however by visu-
ally correlating several metrics to find candidates. By using
the results of detection strategies, we depict the real prob-
lems in a system, without the risk of getting false positives
or false negatives. Recently, the same authors extended their
approach to evolution analysis using animations [10]. Un-
fortunately, the idea is not backed up by a configurable tool
and the authors present an analysis of class-level changes
only. Our approach allows us to observe changes also at the
method level, which led to many intriguing results [19].

Another advantage of our approach over all the presented
related work is the availability of the supporting tool.

5. Tool Support

We built CodeCity [18] on top of the Moose framework
[6], which provides an implementation of the language-
independent FAMIX [5] meta-model for object-oriented
systems. FAMIX’s language-independence allows us to vi-
sualize systems written in several programming languages,
including Java, C++, and Smalltalk. Since we first released
it in March 2008, CodeCity is freely available2 and has been
downloaded more than 1,700 times over a period of about
11 months.

6. Conclusions and Future Work

We have presented an integrated visual approach includ-
ing visualization techniques aimed at supporting program
comprehension, design quality assessment, and evolution
analysis tasks. By using CodeCity, the tool we implemented
to support our research, we applied our approach on several
open-source systems, represented here by ArgoUML.

While the entity representation, the mapping techniques,
and the layouts are in place [16], our approach still lacks
a meaningful representation for the relations between enti-
ties. Finding efficient ways to express the various relations
(e.g., inheritance, invocation, access) is the main direction
for our future work. Besides working on explicit representa-
tions for relations, we envision devising implicit ones, such
as making relations a decisive factor in the layout of the en-
tities (e.g., force-based layouts).

Another possible direction is exploring ways to detect
and encode in our code cities higher-level information about
the systems, e.g., an architectural view.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Hasler Foundation for the project
“EvoSpaces - Multi-dimensional navigation spaces for soft-
ware evolution” (Hasler Foundation MMI Project No.
1976).

References

[1] S. Alam and P. Dugerdil. Evospaces visualization tool: Ex-
ploring software architecture in 3d. In Proceedings of 14th
Working Conference on Reverse Engineering (WCRE 2007),
pages 269–270. IEEE Computer Society, 2007.

[2] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz. Soft-
ware landscapes: Visualizing the structure of large soft-
ware systems. In VisSym 2004, Symposium on Visualization,
pages 261–266. Eurographics Association, 2004.

[3] S. Boccuzzo and H. C. Gall. Cocoviz: Towards cognitive
software visualizations. In Proceedings of IEEE Interna-
tional Workshop on Visualizing Software for Understanding
and Analysis (VISSOFT 2007), pages 72–79. IEEE Com-
puter Society, 2007.

2http://inf.unisi.ch/phd/wettel/codecity.html

[4] S. M. Charters, C. Knight, N. Thomas, and M. Munro. Visu-
alisation for informed decision making; from code to com-
ponents. In International Conference on Software Engineer-
ing and Knowledge Engineering (SEKE ’02), pages 765–
772. ACM Press, 2002.

[5] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 —
The FAMOOS Information Exchange Model. Technical re-
port, University of Bern, 2001.

[6] S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Moose: an agile
reengineering environment. In Proceedings of ESEC/FSE
2005, pages 99–102, Sept. 2005.

[7] L. Erlikh. Leveraging legacy system dollars for e-business.
IT Professional, 2(3):17–23, 2000.

[8] C. Knight and M. C. Munro. Virtual but visible software.
In International Conference on Information Visualisation,
pages 198–205, 2000.

[9] G. Langelier, H. A. Sahraoui, and P. Poulin. Visualization-
based analysis of quality for large-scale software systems.
In ASE, pages 214–223, 2005.

[10] G. Langelier, H. A. Sahraoui, and P. Poulin. Exploring
the evolution of software quality with animated visualiza-
tion. In IEEE Symposium on Visual Languages and Human-
Centric Computing 2008, pages 13–20. IEEE Computer So-
ciety, 2008.

[11] M. Lanza and R. Marinescu. Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[12] M. Lehman and L. Belady. Program Evolution: Processes of
Software Change. London Academic Press, London, 1985.

[13] A. Marcus, L. Feng, and J. I. Maletic. 3d representations for
software visualization. In Proceedings of the ACM Sympo-
sium on Software Visualization, pages 27–36. IEEE, 2003.

[14] R. Marinescu. Detection strategies: Metrics-based rules for
detecting design flaws. In 20th IEEE International Confer-
ence on Software Maintenance (ICSM’04), pages 350–359,
Los Alamitos CA, 2004. IEEE Computer Society Press.

[15] S. P. Reiss. An engine for the 3d visualization of program
information. Journal of Visual Languages and Computing,
6(3):299–323, 1995.

[16] R. Wettel and M. Lanza. Program comprehension through
software habitability. In Proceedings of ICPC 2007 (15th In-
ternational Conference on Program Comprehension), pages
231–240. IEEE CS Press, 2007.

[17] R. Wettel and M. Lanza. Visualizing software systems as
cities. In Proceedings of VISSOFT 2007 (4th IEEE Interna-
tional Workshop on Visualizing Software For Understanding
and Analysis), pages 92–99. IEEE CS Press, 2007.

[18] R. Wettel and M. Lanza. Codecity: 3d visualization of large-
scale software. In ICSE Companion ’08: Companion of
the 30th International Conference on Software Engineering,
pages 921–922. ACM, 2008.

[19] R. Wettel and M. Lanza. Visual exploration of large-scale
system evolution. In Proceedings of WCRE 2008 (15th
Working Conference on Reverse Engineering), pages 219–
228. IEEE CS Press, 2008.

[20] R. Wettel and M. Lanza. Visually localizing design prob-
lems with disharmony maps. In Proceedings of Softvis 2008
(4th International ACM Symposium on Software Visualiza-
tion), pages 155–164. ACM Press, 2008.

[21] M. Zelkowitz, A. Shaw, and J. Gannon. Principles of Soft-
ware Engineering and Design. Prentice Hall, 1979.

http://inf.unisi.ch/phd/wettel/codecity.html

	. Introduction
	. The City Metaphor
	. Approach and Validation
	. Program Comprehension
	. Evolution Analysis
	. Assessing the Quality of the Design
	. Experimental Results

	. Related Work
	. Tool Support
	. Conclusions and Future Work

