
Visually Localizing Design Problems with Disharmony Maps
Richard Wettel∗ and Michele Lanza†

REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract

Assessing the quality of software design is difficult, as “design”
is expressed through guidelines and heuristics, not rigorous rules.
One successful approach to assess design quality is based on de-
tection strategies, which are metrics-based composed logical condi-
tions, by which design fragments with specific properties are de-
tected in the source code. Such detection strategies, when exe-
cuted on large software systems usually return large sets of arti-
facts, which potentially exhibit one or more “design disharmonies”,
which are then inspected manually, a cumbersome activity.

In this article we present disharmony maps, a visualization-based
approach to locate such flawed software artifacts in large systems.
We display the whole system using a 3D visualization technique
based on a city metaphor. We enrich such visualizations with the
results returned by a number of detection strategies, and thus render
both the static structure and the design problems that affect a subject
system. We evaluate our approach on a number of open-source Java
systems and report on our findings.

CR Categories: H.5.1 [Information Interfaces and Presenta-
tions]: Multimedia Information Systems—Artificial, augmented,
and virtual realities; K.6.3 [Management of Computing and In-
formation Systems]: Software Management—Software Mainte-
nance; D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, reengineer-
ing

Keywords: software visualization, software design anomalies

1 Introduction

Designing complex software systems is a difficult task, a process
which takes a long time to learn and a skill that must be perfected
constantly. Over the past two decades a number of design guide-
lines and recipes have been formulated, usually in the form of pat-
terns [Gamma et al. 1995] or heuristics [Riel 1996]. Nonetheless,
due to external factors, namely a changing environment which trig-
gers new requirements on a system, even the best design degrades
over time, leading to a phenomenon aptly termed as “architectural
drift” [Pinzger 2005], “design erosion” [van Gurp and Bosch 2002],
or “code decay” [Eick et al. 2001]. At a fine-grained level such
a decline in quality appears in the form of “bad smells” [Fowler
et al. 1999]. In the light of this degradation process, it is no won-
der that maintenance and evolution claim 90% of the total software
costs [Erlikh 2000].

Reengineering [Chikofsky and Cross II 1990] aims at improving
the design of parts of the system to make it more capable of em-

∗e-mail: richard.wettel@lu.unisi.ch
†e-mail: michele.lanza@unisi.ch

bracing future changes [Beck 2000]. It is however not a shotgun
with which one should target all problematic artifacts, but must be
directed towards the artifacts where such an effort is most needed.
To do so, we need a means to evaluate the design of a system before
taking an informed decision on which of its parts to reengineer.

One approach to assessing the quality of software design is based on
detection strategies [Lanza and Marinescu 2006; Marinescu 2004],
i.e., metrics-based composed logical conditions, by which design
fragments with specific properties are detected in the source code.
The approach defines the concept of “design disharmony” by trans-
lating a set of design guidelines into detection strategies, with which
design disharmonies can be discovered.

Applying detection strategies on large systems usually returns large
sets of candidate artifacts (i.e., classes, methods) which potentially
exhibit one or more design problems. Manually analyzing the re-
sults is a cumbersome activity and it is easy to get lost in the in-
spection process. Moreover, design problems are not isolated, but
interlinked with each other, and a list of results does not provide
information about their distribution throughout a system.

The visual approaches aiming at detecting design anomalies use
combinations of metrics and let the viewer correlate the outliers,
which is prone to both false positives and false negatives, due to the
complex nature of high-level design problems. We present an ap-
proach to visualize the software entities affected by design dishar-
monies, in the context of the entire system. We build on top of
our previous approach to visualizing software systems, based on
a 3D city metaphor [Wettel and Lanza 2007b] and centered around
the concepts of software habitability and locality [Wettel and Lanza
2007a]. Such visualizations provide an observation point for a struc-
tural characterization of the entire system.

Using an approach inspired by geographical information systems,
we enrich the described visualizations with results returned by
a number of design anomaly detection strategies. The result-
ing visualizations, called disharmony maps, focus on the design
flaws [Marinescu 2004] while maintaining the system’s structural
context. The main advantage of disharmony maps is that they pro-
vide an overview of the system’s design and allow the viewer to
mentally map the disharmony-affected entities to locations within
the city.

We apply our approach on several open-source medium to large
Java system, both at a coarse granularity which focuses on classes
and on a finer granularity, i.e., at the method level. Some of our
case studies showed that correlating a set of metrics is not enough
to detect higher-level design problems.

Structure of the paper. We present the design disharmonies in
Section 2 and the city metaphor, on which our approach is based,
in Section 3. After describing the idea behind the approach in Sec-
tion 4, we apply it on several systems in Section 5. We briefly intro-
duce our toolset in Section 6, present the related work in Section 7,
then discuss our findings and conclude in Section 8.

In this article we make use of color pictures. Please read it on-
screen or as a color-printed paper version.

2 Design Harmony

One aspect of particular interest when analyzing a software system
is the quality of its design, which influences both its comprehen-
sibility and the required amount of maintenance over its lifetime.
One approach to assessing design is centered around the concept of
design harmony and its opposite, design disharmony.

2.1 Detecting Disharmonies

Design disharmonies are formalized design shortcomings to de-
note pieces of a system that exhibit design problems [Lanza and
Marinescu 2006]. Informal design rules and guidelines [Riel 1996;
Fowler et al. 1999] are transformed into detection strategies [Mari-
nescu 2004] which are metrics-based logical conditions that detect
violations against design guidelines. The antonym of design dishar-
mony is design harmony: a software artifact is found to be harmo-
nious when it is implemented in an “appropriate” way. This “appro-
priateness” is composed of three distinct harmonies that concern
every software artifact:

1. Identity harmony, which translates to the question “How do
I define myself?”. Every entity in a software system must
justify its existence: does it implement a specific concept and
how does it do that? Is it doing too many things or nothing
at all? In the context of this paper we focus on the following
identity disharmonies:

God Class is a class that performs too much on its own and
does not collaborate much with other classes, but uses data
from other classes.

Brain Class is a class that accumulates an excessive amount
of intelligence, usually in the form of several Brain Methods.
Data Class is a “dumb” data holder class without complex
functionality and on which other classes rely on.

Brain Method is a method that tends to centralize the function-
ality of a class.

Feature Envy refers to methods that seem more interested in
the data of other classes than in their own data.

2. Collaboration harmony, which translates to the question
“How do I interact with others?”. Every entity collaborates
with others to fulfill its tasks. Does it do that all on its own, or
does it use other entities? How does it use them? Does it use
too many? We focus on the following collaboration dishar-
monies:

Intensive Coupling refers to a method that is tied to many
other operations located in only a few classes within the sys-
tem.

Dispersed Coupling is complementary to the Intensive Cou-
pling and it refers to a method which is tied to many opera-
tions dispersed among many classes throughout the system.

Shotgun Surgery refers to the fact that a change in a
method implies many changes of different methods and
classes [Fowler et al. 1999].

3. Classification harmony, which translates to the question
“How do I define myself with respect to my ancestors and
descendants?”. This harmony combines the two other har-
monies in the context of inheritance. For example, does a
subclass use all the inherited services, or does it ignore some
of them? Due to space reasons we omit the presentation of
these disharmonies, and refer the interested reader to [Lanza
and Marinescu 2006].

Example: The God Class Disharmony. This design flaw, first
described by Riel [Riel 1996], refers to classes that tend to incor-
porate an overly large amount of intelligence and whose charac-
teristics are described by the following rules: (1) They heavily ac-
cess data of simpler classes, either directly or using accessor meth-
ods; (2) They are large and complex; (3) They have a lot of non-
communicative behavior, i.e., there is a low cohesion between the
methods belonging to that class.

Figure 1: The God Class Detection Strategy

These informal rules can be transformed into the detection strategy
depicted in Figure 1. The filtering conditions are expressed in terms
of the following metrics (the left part of the expressions) and related
to thresholds (the right part of the expressions):

• Access To Foreign Data (ATFD) represents the number of ex-
ternal classes whose any subset of attributes are accessed by
the given class.

• Weighted Method Count (WMC) is the sum of the statistical
complexity in a class [Chidamber and Kemerer 1994], using
McCabe’s cyclomatic complexity metric [McCabe 1976].

• Tight Class Cohesion (TCC) is the relative number of meth-
ods connected via attribute accesses [Bieman and Kang 1995;
Briand et al. 1998].

3 Code Cities in a Nutshell

In the context of the EvoSpaces1 project, which aims at exploiting
multi-dimensional navigation spaces to visualize evolving software
systems, several metaphors were tried [Boccuzzo and Gall 2007]
to provide some tangibility to the abstract nature of software, in-
cluding our city metaphor [Wettel and Lanza 2007b]. The main
advantages of our metaphor are clear notions of locality and habit-
ability [Wettel and Lanza 2007a], which support the viewer’s orien-
tation, as well as a structural complexity which cannot be oversim-
plified. As a consequence, our city metaphor has been adopted in
the project’s supporting tool [Alam and Dugerdil 2007].

Since we focus on object-oriented programs, we depict entities such
as packages, classes, methods, attributes, and relationships such as
inheritance, invocation, and access. We represent classes as build-
ings located in city districts which in turn represent packages, be-
cause a city, with its downtown area and its suburbs, is a familiar
notion with a clear concept of orientation. Large cities are intrinsi-
cally complex constructs which can be only incrementally explored,
in the same way that the understanding of a complex system in-
creases step by step. The city artifacts with their visual properties
(e.g., dimensions, position, color) depict a set of properties of the
software elements they represent, chosen according to the task at
hand. Essentially, our aim is to represent systems as realistic cities
that can be navigated and interacted with.

1http://www.inf.unisi.ch/projects/evospaces

KeyEvent
NOA 205, NOM 18

PageAttributes$MediaType
NOA 223, NOM 1

Component
NOA 88, NOM 280

Container
NOA 21, NOM 127

Arrays
NOA 1, NOM 115

Bits
NOA 10, NOM 115

Window
NOA 25, NOM 89 Calendar

NOA 81, NOM 71

java.awt.event

Figure 2: Code city of JDK1.5 core (160+ kLOC)

The user can interact with any artifact of the visualization by: (1)
hovering over a figure to see information about the figure and about
the model behind it, (2) opening a context-sensitive popup menu, or
(3) using queries (both predefined and user-defined).

To provide a structural overview of the entire visualized system, we
strive for an efficient use of the available space. A widely-used lay-
out for hierarchical structures is the treemap [Shneiderman 1992],
which incrementally splits the space into areas proportionally to a
particular measure of the elements. Our layout is constrained by the
fixed element dimensions (i.e., as the result of the metric mapping),
which boils down to solving a rectangle-packing problem. The hier-
archical layout we implemented is based on kd-trees [Bentley 1975]
and aims at minimizing the amount of wasted space.

Example. Figure 2 depicts the core of JDK 1.5 (i.e., the entire java
namespace). The buildings represent classes and interfaces, placed
on top of tiles representing their containing packages. The height
of a building represents the number of methods (NOM) of the class,
the width and length represent its number of attributes (NOA). The
increasing saturation of the tiles denotes the nesting level of the
packages. JDK is a fairly large system with a shallow package nest-
ing level (we count at most 4 stacked district platforms). We can
also see outliers in terms of the mapped metrics. The wide and flat
buildings are classes with many attributes and few methods, such as
PageAttributes$MediaType and KeyEvent. The thin and tall towers,
represent classes with NOM>> NOA, such as Bits. There are also
classes with high values for both NOM and NOA, such as Compo-
nent or Calendar. Besides various outliers, we also see how func-
tionality is distributed within packages, for example java.awt.event
contains classes with a similar amount of functionality (NOM) and
state (NOA), with the exception of KeyEvent, which has many more
attributes (the events for each key are saved as constant attributes).

4 Disharmony Maps

To address the complexity of the results returned by the detection
strategies, we integrate the information about design disharmonies,
by drawing inspiration from the geographical information systems
(GIS) domain. The information we are interested in is a form of
multivariate data (i.e., there are usually several design disharmonies
affecting a system at any moment), which is similar in many ways
to a number of theme map types. One such example is the disease
map, in which the regions of a world map are colored according to
the diseases which affected them. Such a disease map allows one to
see which are the dominating diseases in the world for a particular
period of time and also how they are distributed around the globe.

Similarly, we assign vivid colors to the design harmony breakers
and shades of gray to the unaffected ones. This enables us to fo-
cus on the design disharmonies in the presence of a non-distracting
context. We incorporate this idea into our city metaphor, which
provides the concept of locality to the software elements and suits
well the geographical context. The analogy to disease maps is in-
tuitive, since the design anomalies are “diseases” affecting particu-
lar elements inside a system’s software artifact “population”. The
resulting visualization, called disharmony map, provides a quick
overview of the problems affecting the software system in terms of
proportion, distribution and dominant types of design disharmonies.

In the absence of design anomaly data, conventional approaches al-
low us to observe outliers in terms of the mapped metrics and clas-
sify them as potential design anomalies. For example, a class with a
high NOM is a potential God Class, or a class with many attributes
and fewmethods is a potential Data Class. One advantage of dishar-
mony maps is that they encode the disharmony information in color,
allowing us to further map structural information (NOA, NOM) on
the rest of the visual properties.

Figure 3: City of JDK with focus on God Classes: isometric view (left) and top view (right)

4.1 Design Anomalies in Context

By combining the results of design disharmony detection with our
visual city metaphor, we obtain the big picture of the system’s de-
sign problems, which can hardly be imagined using a non-visual,
text-based approach. To illustrate this aspect, we further present
the same set of results using both a textual representation and our
visualization.

Figure 4: God Classes in JDK core

Running the God Class detection strategy on the core of JDK (Java
Development Kit) returns a list of 81 affected classes out of the
system’s almost 5,000 classes.

With a non-visual approach, the results can be presented in the form
of two lists: the result list (Figure 4, right) and the list of all the
classes in the system (Figure 4, left), which serves as context. The
shortcomings of such a representation are: (1) it lacks the overview,
since it is impossible to look at the results as a whole and scrolling
through the list induces context loss, (2) to localize theGod Classes,
one has to process the list by clustering it based on the packages in
which the classes are defined and then sort the clusters based on the
number of occurrences, and (3) it is completely unfeasible to cor-
relate several disharmony types, even in the case of more effective
textual representations (e.g., trees).
Given the complexity of the software systems we analyze, our vi-
sual approach aims at localizing the detected disharmonious ele-
ments and present them concisely in their context, i.e., the entire
system. A disharmony map depicting only the God Class problem
in JDK is presented in Figure 3, which shows a birds-eye (on the
right) and an isometric (on the left) view. Based on it, we see that
the suffering classes are dispersed in many of the packages. We can
also observe that not all the large classes are God Classes and some
of the apparently less harmful ones hide their disharmony. Next,
we apply our approach on a number of open-source systems and
explore observing several design disharmonies in correlation.

5 Application

We applied our approach on 4 open-source Java systems: JDK (Java
Development Kit), ArgoUML (UML modeling tool), Jmol (viewer
for chemical structures in 3D), and iText (PDF library). In Table 1
we present the version for each system and their magnitudes in
terms of lines of code, number of packages, number of classes, and
number of methods.

System version Lines Packages Classes Methods
JDK v. 1.5 160’287 137 4’715 19’379
ArgoUML v. 0.24 144’523 142 2’468 14’692
Jmol r. 8065 84’984 105 1’032 7’751
iText r. 2892 80’389 149 1’250 7’182

Table 1: Systems under study

Figure 5: Class-level disharmonies in JDK

5.1 Class-Level Disharmonies

We encode each disharmony in a different color: yellow for Brain
Class, blue for God Class, red for Brain & God Class, and green
for Data Class. For better visibility, in the case of large buildings
obstructing other buildings relevant to the discussion, we manually
set their transparency (user-modifiable) to 40 %. Each visualization
shows a legend, presenting the targeted disharmonies, and for each
of them the assigned color and the number of affected entities.

JDK. Before diving into details, the first impression we get by
looking at the overview of JDK (Figure 5) is that the system looks
well-organized, in spite of the numerous disharmonious artifacts:
we see green districts, where mostly Data Classes are localized and
districts of increased complexity, in which several God Classes and
Brain Classes are defined.

An interesting district is java.awt.event, made of one wide and flat
building, representing the class KeyEvent and many small classes,
all representing other events (e.g.,InputEvent). Although by look-
ing at the properties of the classes one would be tempted to catego-
rize KeyEvent as a Data Class due to its 205 attributes and only 18
methods, it actually is one of the few classes in this package which
is not affected by the disharmony. This is due to the fact that not
only there are non-accessors among the 18 methods of this class,
but some of them are quite complex.

The “green” district (to the right of the large red building) represent-
ing package java.awt.geom seems to have grouped a fair number of
the 109 Data Classes in JDK. The superclass of all these classes is
the large Data Class Event (84 attributes, 14 methods), defined in
the parent package java.awt.

Many of the classes that are both God and Brain Classes (i.e., de-
picted by red buildings) are defined in the java.awt package, which
handles the core graphics part in Java: Component (the domi-
nating building in the city, due to the class’s 88 attributes and
280 methods), Container, or Font. Moreover, some of the core
classes belonging to Java’s type system are either Brain Classes,
(e.g., String), God Classes (e.g., BigInteger, Class, Calendar), or
both (e.g., BigDecimal).

Some of the God Classes are easy to overlook in the absence of
disharmony data, e.g., class Security with its only 3 attributes and
30 methods, which obviously encodes some complex encryption al-
gorithms. The same holds for class AbstractQueuedSynchronizer
residing in package java.util.concurrent.locks, whose complexity is
suggested by its very name. Our approach allows us to complement
the structural information of the elements with the actual dishar-
mony data, revealing even the subtle design anomalies.

An interesting package is java.util.regex with its share of complex-
ity in the form of God Class Matcher and God & Brain Class
Parser, which practically accumulate the entire intelligence of the
package, used for the processing of regular expressions. This is il-
lustrated by a district containing two rather large “corporate” build-
ings surrounded by small houses.

Package java.util.logging illustrates another pattern, a God Class to-
gether with the Data Class it misuses: Logger (18 attributes, 53
methods), and LogRecord (17 attributes, 28 methods), aData Class
in spite of its many methods. To verify this hypothesis, we in-
spected the relations of the involved classes, which revealed that
more than one half (48 out of 86) of the statically-determined in-
vocations of class LogRecord’s methods (most of which are getters
and setters) are performed by class Logger.

com.lowagie.text.rtfRtfWriter
NOA 148, NOM 55

com.lowagie.text.html
com.lowagie.text.pdf

RtfList
NOA 40, NOM 19

RtfCell
NOA 14, NOM 25

Cell
NOA 15, NOM 73

Table
NOA 17, NOM 83

List
NOA 17, NOM 42

Image
NOA 62, NOM 123

com.lowagie.text.xml

ArabicLigaturizer
NOA 39, NOM 11

Phrase
NOA 3, NOM 33

Document
NOA 19, NOM 49

Paragraph
NOA 10, NOM 37

PdfWriter
NOA 120, NOM 139

PdfContentByte
NOA 26, NOM 170

PdfDocument
NOA 46, NOM 85

PdfReader
NOA 42, NOM 133

PdfSignatureAppearance
NOA 56, NOM 69

BaseFont
NOA 66, NOM 63

PdfName
NOA 510, NOM 7

Figure 6: Class-level disharmonies in iText

iText. The first impression given by the overview of iText is one
of a rather bulky system, with a large number of outlying classes.
The system seems to lack organization and the disharmonies are
chaotically spread all over it. The dominating colors in the dishar-
mony map reveal many problems: 28 Brain Classes, 52 God
Classes (20 of which affected by both disharmonies), and 41 Data
Classes.
The lower-left part of Figure 6 shows a birds-eye view of the sys-
tem, composed of 3 library packages (right part of the view), the
examples package com.lowagie.examples (lower part of the view)
and the core package com.lowagie.text (the central part, delimited
by the perimeter).

This core package also appears as a detailed isometric view
in the center of Figure 6 with annotated entities. The pack-
age contains several subpackages, one for each file format:
com.lowagie.text.xml, com.lowagie.text.html, com.lowagie.text.rtf,
and com.lowagie.text.pdf.

The com.lowagie.text.pdf package is vast, with 239 classes (out of
which 61 affected by at least one class-level disharmony) and only
8 subpackages, each with just a few defined classes. With that many
classes defined in it, this single package has grown into a module
which is difficult to understand and manage, a fact reflected by the
over one quarter of disharmonious classes.

The system contains hierarchies spreading over the file-format spe-
cialized packages (i.e.,xml, html, rtf, and pdf), whose base classes
are defined in the main package com.lowagie.text. Among these
base classes there are many God Classes (e.g.,Cell, Table, List,
Phrase, Document, Paragraph), all annotated on Figure 6 (right
part).

In package com.lowagie.text.rtf, we see some examples of “hered-
itary” disharmony, illustrated by Brain & God Class RtfWriter,
and God Classes RtfCell and RtfList, all disharmonious like their
superclasses. The most striking harmony breakers reside in the
com.lowagie.text.pdf package, in which the red color dominates,
due to the large number of Brain & God Classes, such as PdfWriter
(120 attributes, 133 methods), PdfReader (42 attributes and 133
methods), or PdfDocument (46 attributes, 85 methods).

Another remarkable phenomenon comes in the form of the appar-
ently tiny buildings affected by design disharmonies that imply an
increased complexity (i.e., God Class or Brain Class). Inspecting
one of these classes, called Phrase reveals that its scale is reduced
only in the context of the iText system, as NOM=33 is a value con-
sidered very large for a Java class [Lanza and Marinescu 2006]. The
disharmony map indicates it as a God Class and thus does not allow
the maintainers of the system to overlook this potentially problem-
atic class.

During our experiments we noticed that there is no evident link be-
tween the simple metric values, such as the NOA and NOMmetrics
for a class and the disharmonies affecting it. The first

One example that confirms this is given by two classes with more
or less the same magnitude in terms of the NOM and NOA metrics,
yet which are total opposites: While BaseFont (66 attributes and 63
methods) appears as a healthy class with respect to the class-level
harmony, PdfSignatureAppearance (56 attributes, 69 methods) is a
God & Brain Class, due to the complexity of its methods and the
way it collaborates with other classes. Another example is class Ara-
bicLigaturizer, (39 attributes, 11 methods) which contains enough
complexity in its few methods to qualify as a God & Brain Class.

org.argouml.reveng.java

Modeller
(NOA 15, NOM 52)

JavaRecognizer
NOA 79, NOM 176

org.argouml.reveng.classfile

SimpleByteLexer$GeneratorCPP
NOA 34, NOM 100

SimpleByteLexer$CPPParser
NOA 85, NOM 204

SimpleByteLexer$GeneratorPHP4
NOA 4, NOM 33

org.argouml.diagram.ui

FigNodeModelElement
NOA 39, NOM 98

FigEdgeModelElement
NOA 13, NOM 76

FigAssociation
(NOA 8, NOM 17)

JavaRecognizer
NOA 24, NOM 91

GeneratorJava
NOA 11, NOM 66

JavaLexer
NOA 9, NOM 72

org.argouml.language.java.generator

org.argouml.uml.notation.uml

org.argouml.model.mdr

FacadeMDRImpl
NOA 3, NOM 349

CoreHelperMDRImpl
NOA 2, NOM 154

Facade
NOA 1, NOM 337

JavaTokenTypes
(NOA 173, NOM 0)

UmlFactoryMDRImpl
NOA 9, NOM 22

Figure 7: Class-level disharmonies in ArgoUML

ArgoUML. ArgoUML has 17 Brain Classes and 33 God Classes
(of which 9 classes affected by both disharmonies), and 17 Data
Classes, which are not distributed all over the system, but rather
sparsely, as Figure 7 shows.

Our attention is drawn to 3 similar formations, each composed of
1 wide, flat building and 2-3 massive neighbor buildings. The first
one resides in the org.argouml.reveng.java district, and is made of
the huge red building (i.e., Brain & God Class JavaRecognizer),
a smaller red building (i.e., class Modeller), and a wide and flat
building which looks like a parking lot (i.e., class JavaTokenTypes
with 173 attributes and no methods). Although we would expect
the latter to be a Data Class it is not, because all its attributes are
declared as final public, i.e., they are pure Java constants.

The second similar package is org.argouml.reveng.classfile, with
two Brain Classes: the city’s dominating building, class CPPParser
with 85 attributes and 204 methods and the smaller affected one,
class GeneratorCPP (34 attributes and 100 methods), which are
both inner classes defined in SimpleByteLexer. An inner class of
the same class is the “parking lot” representing class STDCToken-
Types with 152 attributes and no methods, which serves as the
repository for constants for the C++ parsing. Another example of
elusive Brain Class, revealed only due to the disharmony data, is
GeneratorPHP4 with its only 4 attributes and 33 methods.

The third similar package is org.argouml.language.java.generator,
on the left of the picture. It contains three Brain Classes: JavaRec-
ognizer (24 attributes, 91 methods), GeneratorJava (11 attributes,
66 methods), and JavaLexer (9 attributes, 72 methods). As in the
first package, the constants repository is also called TokenTypes
(146 attributes). As reported in [Wettel and Lanza 2007a], hav-

ing the same code twice (the two JavaTokenTypes have almost 150
identical constants) is questionable, yet less harmful in the case of
generated classes, which are not manually maintained.

By contrast, the God Classes FigNodeModelElement (39 attributes,
98 methods), FigEdgeModelElement (13 attributes, 76 meth-
ods) and FigAssociation (8 attributes, 17 methods), located in
org.argouml.uml.diagram.ui, are core classes and thus, very likely
to be subject to continuous maintenance and change requirements.

Another disharmonious agglomeration is a district characterized by
a “forest” of very thin and extremely tall buildings (few attributes
and many methods), representing package org.argouml.model.mdr.
Out of its 35 classes, 8 are God Classes and 2 are God & Brain
Classes. The doubly-affected classes are UmlFactoryMDRImpl (9
attributes, 22 methods) and CoreHelperMDRImpl (2 attributes, 154
methods). The largest affected class of this package, depicted by a
building that literally touches the sky, is the God Class FacadeM-
DRImpl (3 attributes, 349 methods). All these classes are the only
implementations of the interfaces UmlFactory, CoreHelper, and Fa-
cade, respectively. In spite of their large number of methods, the
interfaces are not affected by disharmonies due to their lack of de-
fined functionality. However, perceived through their implement-
ing classes, these apparently harmless interfaces qualify as mecha-
nisms for building God Classes and Brain Classes. By analyzing
ArgoUML’s history (not in the scope of this paper), we learned that
the Facade interface (and by analogy the other interfaces in the hi-
erarchy) had two concrete implementations in one of the versions
of the system. Some versions later, one of the implementations dis-
appeared, leaving the MDR implementations as the only one until
these days. This problematic package is also one of the case studies
for the method-level disharmony maps, presented next.

Finally, we observed other hardly visible colored buildings in dis-
trict org.argouml.uml.notation.uml, representing the God & Brain
Classes NotationUtilityUML (NOA 6 , NOM 24), MessageNotation-
UML (NOA 2, NOM 29), AttributeNotationUML (NOA 2, NOM 8),
and OperationNotationUML (NOA 0, NOM 9). Since both dishar-
monies require high complexity, it was unexpected to find these
apparently low-functional classes (i.e., reduced height) among the
affected. To our surprise, these classes privately held the follow-
ing amounts of code expressed in LOC: 1240, 1538, 432, and 450,
respectively. These classes were not programmed in the object-
oriented spirit and should be reviewed by ArgoUML’s maintainers.

5.2 Method-Level Disharmonies

To visualize method-level disharmonies, we use a finer-grained rep-
resentation which extends the previous one by explicitly depicting
the methods, combined with a specific layout. Stepping away from
the monolithic block representation, we now depict a class as one
base platform on top of which we stack up vertically, in layers of
4, the set of “bricks” representing its methods (See close-up de-
tail in Figure 8). Besides the increased level of detail it provides,
this representation allows for user interaction down to the method
level. The height of the class representation is still proportional to
the number of methods. Due to the fact that looking at the entire
system using this granularity is impractical (i.e., too many depicted
entities), we focus on specific parts of the systems.

Class

Methods

Figure 8: Yellow-colored Feature Envy in Jmol and a close-up
detail of class with 7 methods laid out as bricks (top right)

Visualizing Jmol using the bricks view (see Figure 8) reveals the fact
that more than one quarter of the methods in Jmol (e.g., 1’555 out
of 5’968) exhibits the Feature Envy disharmony. Our visualization
depicts the Feature Envy “epidemic” in a suggestive way and the
picture says it all: the system needs to be quarantined right away
for a serious session of reengineering.

However, classes with an extremely high number of methods (e.g.,
hundreds) are represented as overly tall buildings, which for an
overview pushes the viewer far away in order to comprise every
entity and starting with certain distances, the details are too small
to be useful. To address this issue, we devised an adaptive vertical
layout called Progressive Bricks, by considering the Bricks layout
as a particular case in which the walls of the buildings are 2-bricks
wide, and then generalizing it. The width of the wall (in number of
bricks) is adapted to the number of bricks of the building in order to
obtain reasonable heights. The magnitude of the class (in terms of
the NOM metric) is expressed this time by the building’s volume.

Facade
NOM 337

FacadeMDRImpl
NOM 349 Model

(NOM 44)

VisibilityKind
(NOM 4)

PseudostateKind
(NOM 7)

AggregationKind
(NOM 3)

Figure 9: Red-colored Shotgun Surgery in org.argouml.model

Figure 9 shows a visualization of package org.argouml.model using
the Progressive Bricks adaptive layout. This package, which was
subject to discussions also during the class-level analysis, contains
in this representation the two most massive buildings in the city of
ArgoUML (i.e., the highest number of methods), representing the
interface Facade and a class that implements this interface, called
FacadeMDRImpl. Displaying all the method-level disharmonies of
this package reveals the fact that the dominating disharmony char-
acterizing this package is Shotgun Surgery, depicted by the many
buildings “tainted” with the dark red color. Moreover, we see that
a large amount of the dark red “bricks” (representing methods) be-
long to only a reduced set of classes. The largest building affected
by this disharmony is the Facade interface. In contrast to the class-
level disharmonies discovered in this package, the method-level
disharmonies are detected on the interface and not on the classes
implementing it, due to the fact that the calls are done using poly-
morphism, i.e., they are targeting a reference to the interface. Out
of the 337 methods defined in Facade, 140 exhibit the Shotgun
Surgery disharmony. Apart from this interface, the Model interface
has many methods with Shotgun Surgery (28 out of 44) and 3 small
classes have only methods with Shotgun Surgery: AggregationKind
(3), VisibilityKind (4), and PseudostateKind (7), respectively. This
disharmony is somewhat expectable in this package, since it is part
of the system’s model and all the other modules depend on it. A
class with an increased number of methods affected by Shotgun
Surgery is fairly difficult to change, since any change is likely to
require many changes throughout the system.

6 Tool Support

We built our tool called CodeCity on top of the Moose [Ducasse
et al. 2005] framework which provides, among others, an implemen-
tation of the FAMIX [Demeyer et al. 2001] language-independent
meta-model for object-oriented software. For the parsing of Java
systems we use iPlasma [Marinescu et al. 2005].

CodeCity is written in Smalltalk and uses OpenGL for rendering
the visualizations. Besides configuring the view in terms of glyphs,
property mappings, and layouts, the user can spawn secondary
views, or interact with the artifacts (e.g., querying, color tagging).
CodeCity can visualize systems written in different languages (e.g.,
Java, Smalltalk, C++), runs on any major platform (e.g.,Windows,
Mac OS X, Linux), and is freely available for download at:
http://www.inf.unisi.ch/phd/wettel/codecity.html.

7 Related Work

Since the early days of software visualization, software has been
visualized at various levels of detail, from the module granularity
seen in Rigi [Muller and Klashinsky 1988] to the individual lines of
code depicted in SeeSoft [Eick et al. 1992].

Besides our metaphor, most software visualizations which target
the quality of software depict the software artifacts in terms of a set
of software metrics. In the polymetric views [Lanza and Ducasse
2003], software elements are visualized as rectangles with met-
rics mapped on their position, dimensions and color. Kiviat dia-
grams [Pinzger et al. 2005] depict evolving software entities over
several versions in terms of large sets of software metrics.

Apart from the metrics aspect, our visual representation is related
to a number of previous works in 3D, detailed in the following.

The increase in computing power over the last 2 decades enabled
the use of 3D metric-based visualizations, which provides the
means to explore more realistic metaphors for software represen-
tation. One such approach is poly cylinders [Marcus et al. 2003],
which makes use of the third dimension to map more metrics. As
opposed to this approach in which the representations of the soft-
ware artifacts can be manipulated (i.e., moved around), our code
cities imply a clear sense of locality which helps in viewer orien-
tation. Moreover, our approach provides an overview of the hierar-
chical (i.e., package) structure of the systems.
The value of a city metaphor for information visualization is proven
by papers which proposed the idea, even without having an imple-
mentation. [Santos et al. 2000] proposed this idea for visualizing
information for network monitoring and later [Panas et al. 2003]
proposed a similar idea for software production. Among the re-
searchers who actually implemented the city metaphor, [Knight and
Munro 2000; Charters et al. 2002] represented classes are districts
and the methods are buildings. Apart from the loss of package in-
formation (i.e., the big picture), this approach does not scale to the
magnitude of today’s software systems, because of its granularity.
We owe the scalability of our approach to a more appropriate map-
ping between the software world and the city environment, to a con-
figurable granularity, and to the computing power available today.

Other 3D geographically-inspired visualizations include the soft-
ware landscapes [Balzer et al. 2004], which reduces the visual com-
plexity through an incremental level of detail (i.e., the transparency
of the container artifacts is adjusted to the distance of the view-
point). The approach lacks system overview capabilities, because
the loose, navigation-targeted layout does not scale for it, even in
the presence of complete transparency of the containers. A 3D ap-
proach, which produces layouts similar to ours, is found in informa-
tion pyramids [Andrews et al. 1997], applied to file systems.

As for the visualization of design anomalies, to our best knowledge,
all the previous work depicts software artifacts in terms of a reduced
set of low-level metrics and does not address the visual representa-
tion of such high-level design problems. Although one can corre-
late the outliers (i.e., extreme values) for a particular metric set to
reveal potential candidates for a particular design anomaly, these
oftentimes include false positives and false negatives, as some of
our examples in Section 5 illustrate.

The 3D visual approach closest in focus to ours is [Langelier et al.
2005], which uses boxes to depict classes and maps software met-
rics on their height, color and twist. The classes’ box representa-
tions are laid out using either a modified treemap layout or a sun-
burst layout, which split the space according to the package struc-
ture of the system. The authors address the detection of design
principles violations or anti-patterns by visually correlating outly-

ing properties of the representations, e.g., a twisted and tall box rep-
resents a class for which the two mapped metrics have an extremely
high value. Besides false positives and negatives, the drawbacks
of this approach is that one needs different sets of metrics for each
design anomaly and the number of metrics needed for the detection
oftentimes exceeds the mapping limit of the representation (i.e., 3).
The detection strategies [Marinescu 2004] were introduced as a
mechanism to formulate complex rules using the composition of
metrics-based filters, and extended later [Lanza and Marinescu
2006] by formalizing the detection strategies and providing aid in
recovering from detected problems. The 2D polymetric views pro-
vided as means to visualize the systems do not explicitly illustrate
the disharmonious artifacts, nor do they provide an overview and
distribution of the disharmonies within the observed systems. The
non-visual approach of [Raţiu et al. 2004] aims at further improv-
ing the design flaw detection by taking into account information
from the suspect classes’ evolution to compute their persistency in
exhibiting a particular design flaw during their lifetime.

8 Discussion & Conclusions

We extended our previous work on 3D software visualization [Wet-
tel and Lanza 2007a; Wettel and Lanza 2007b], by enriching it with
data on the quality of the system’s design. We obtain this infor-
mation by running detection strategies [Marinescu 2004] to reveal
design disharmonies [Lanza and Marinescu 2006]. Drawing inspi-
ration from the field of geographical information systems, we use
a gray color scheme for unaffected artifacts and strong colors for
affected ones, according to the disharmonies they exhibit.

With our case studies, we showed that using a pure metric-based
visualization to assess the design problems of a system is prone to
false results, because an outlier is not necessarily a disharmonious
entity, as our counterexamples have proved. These false “first im-
pressions” are due to the fact that each design disharmony is de-
fined as a complex expression of a set of metrics. To have a more
informed first impression without using the results of the detection
strategies would require mapping a large amount of metrics on each
visualization, which is not feasible due to the reduced amount of vi-
sual properties that the human eye and brain are able to grasp. How-
ever, looking only at a list of results of running the detection strate-
gies against a subject system does not provide enough context for
the assessment of its design’s quality. Neither does visualizing the
system using only structural information. An overview of dishar-
monies and their distribution throughout the system, supported by
the locality of our metaphor, helps in building a mental image of
the design problems within the system.

The main contribution of this paper is an effective integration of
the design anomaly data with our visual approach based on a 3D
city metaphor, which provides both the big picture of the system’s
design problems and the means to further investigate the details.

We applied our approach on 4 Java systems, and were able to learn
about false appearances, visualize patterns of disharmonies, ob-
serve how a bad organization of the package structure is accompa-
nied by many disharmonies of its classes, or how disharmonies can
conquer a system in the absence of reengineering. As future work,
we plan to perform an evaluation of our approach’s effectiveness.

Acknowledgements

We gratefully acknowledge the financial support of the Hasler Foundation for the
project “EvoSpaces” (Hasler Foundation MMI Project No. 1976). We thank the
European Smalltalk User Group (http://esug.org) and CHOOSE (http://
choose.s-i.ch) for travel sponsorships.

References

ALAM, S., AND DUGERDIL, P. 2007. Evospaces visualization
tool: Exploring software architecture in 3d. In Proceedings of
WCRE 2007, IEEE CS Press, 269–270.

ANDREWS, K., WOLTE, J., AND PICHLER, M. 1997. Information
pyramids: A new approach to visualising large hierarchies. In
Proceedings of VIS 1997, IEEE CS Press, 49–52.

BALZER, M., NOACK, A., DEUSSEN, O., AND LEWERENTZ, C.
2004. Software landscapes: Visualizing the structure of large
software systems. In Proceedings of VisSym 2004, Eurographics
Association, 261–266.

BECK, K. 2000. Extreme Programming Explained: Embrace
Change. Addison Wesley.

BENTLEY, J. L. 1975. Multidimensional binary search trees used
for associative searching. Commun. ACM 18, 9, 509–517.

BIEMAN, J., AND KANG, B. 1995. Cohesion and reuse in an
object-oriented system. In Proceedings of the ACM Symposium
on Software Reusability, ACM Press.

BOCCUZZO, S., AND GALL, H. C. 2007. Cocoviz: Towards cog-
nitive software visualizations. In Proceedings of VISSOFT 2007,
IEEE CS Press, 72–79.

BRIAND, L. C., DALY, J. W., AND WÜST, J. 1998. A Unified
Framework for Cohesion Measurement in Object-Oriented Sys-
tems. Empirical Software Engineering: An International Jour-
nal 3, 1, 65–117.

CHARTERS, S. M., KNIGHT, C., THOMAS, N., AND MUNRO, M.
2002. Visualisation for informed decision making; from code to
components. In Proceedings of SEKE 2002, ACM Press, 765–
772.

CHIDAMBER, S. R., AND KEMERER, C. F. 1994. A metrics suite
for object oriented design. IEEE Transactions on Software Engi-
neering 20, 6 (June), 476–493.

CHIKOFSKY, E., AND CROSS II, J. 1990. Reverse engineering
and design recovery: A taxonomy. IEEE Software 7, 1, 13–17.

DEMEYER, S., TICHELAAR, S., AND DUCASSE, S. 2001. FAMIX
2.1 — The FAMOOS Information Exchange Model. Tech. rep.,
University of Bern.

DUCASSE, S., GÎRBA, T., AND NIERSTRASZ, O. 2005.
Moose: an agile reengineering environment. In Proceedings of
ESEC/FSE 2005, 99–102.

EICK, S. G., STEFFEN, J. L., AND ERIC E., JR., S. 1992.
SeeSoft—a tool for visualizing line oriented software statistics.
IEEE Transactions on Software Engineering 18, 11 (Nov.), 957–
968.

EICK, S., GRAVES, T., KARR, A., MARRON, J., AND MOCKUS,
A. 2001. Does code decay? assessing the evidence from change
management data. IEEE Transactions on Software Engineering
27, 1, 1–12.

ERLIKH, L. 2000. Leveraging legacy system dollars for e-business.
IT Professional 2, 3, 17–23.

FOWLER, M., BECK, K., BRANT, J., OPDYKE, W., AND
ROBERTS, D. 1999. Refactoring: Improving the Design of Ex-
isting Code. Addison Wesley.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison Wesley.

KNIGHT, C., AND MUNRO, M. C. 2000. Virtual but visible soft-
ware. In Proceedings of IV 2000, IEEE CS Press, 198–205.

LANGELIER, G., SAHRAOUI, H. A., AND POULIN, P. 2005.
Visualization-based analysis of quality for large-scale software
systems. In Proceedings of ASE 2005, ACM Press, 214–223.

LANZA, M., AND DUCASSE, S. 2003. Polymetric views—a
lightweight visual approach to reverse engineering. Transactions
on Software Engineering (TSE) 29, 9 (Sept.), 782–795.

LANZA, M., AND MARINESCU, R. 2006. Object-Oriented Metrics
in Practice. Springer-Verlag.

MARCUS, A., FENG, L., AND MALETIC, J. I. 2003. 3d repre-
sentations for software visualization. In Proceedings of SoftVis
2003, ACM Press, 27–36.

MARINESCU, C., MARINESCU, R., MIHANCEA, P. F., RATIU,
D., AND WETTEL, R. 2005. iPlasma: An integrated platform
for quality assessment of object-oriented design. In Proceedings
of ICSM 2005, Industrial & Tool Volume, IEEE CS Press, 77–80.

MARINESCU, R. 2004. Detection strategies: Metrics-based rules
for detecting design flaws. In Proceedings of ICSM 2004, IEEE
CS Press, 350–359.

MCCABE, T. 1976. A measure of complexity. IEEE Transactions
on Software Engineering 2, 4 (Dec.), 308–320.

MULLER, H., AND KLASHINSKY, K. 1988. Rigi: a system for
programming-in-the-large. In Proceedings of ICSE 1988, ACM
Press, 80–86.

PANAS, T., BERRIGAN, R., AND GRUNDY, J. 2003. A 3d
metaphor for software production visualization. In Proceedings
of IV 2003, IEEE CS Press, 314.

PINZGER, M., GALL, H., FISCHER, M., AND LANZA, M. 2005.
Visualizing multiple evolution metrics. In Proceedings of SoftVis
2005, ACM Press, 67–75.

PINZGER, M. 2005. ArchView – Analyzing Evolutionary Aspects
of Complex Software Systems. PhD thesis, Vienna University of
Technology.

RAŢIU, D., DUCASSE, S., GÎRBA, T., AND MARINESCU, R.
2004. Using history information to improve design flaws detec-
tion. In Proceedings of CSMR 2004, IEEE CS Press, 223–232.

RIEL, A. 1996. Object-Oriented Design Heuristics. Addison Wes-
ley, Boston MA.

SANTOS, C. R. D., GROS, P., ABEL, P., LOISEL, D., TRICHAUD,
N., AND PARIS, J. P. 2000. Mapping information onto 3d virtual
worlds. In Proceedings of IV 2000, 379–386.

SHNEIDERMAN, B. 1992. Tree visualization with tree-maps: 2-d
space-filling approach. ACM Trans. Graph. 11, 1, 92–99.

VAN GURP, J., AND BOSCH, J. 2002. Design erosion: problems
and causes. Journal of Systems and Software 61, 2, 105–119.

WETTEL, R., AND LANZA, M. 2007. Program comprehension
through software habitability. In Proceedings of ICPC 2007,
IEEE CS Press, 231–240.

WETTEL, R., AND LANZA, M. 2007. Visualizing software sys-
tems as cities. In Proceedings of VISSOFT 2007, IEEE CS Press,
92–99.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

