
CodeCity: 3D Visualization of Large-Scale Software

Richard Wettel
REVEAL @ Faculty of Informatics,
University of Lugano, Switzerland
richard.wettel@lu.unisi.ch

Michele Lanza
REVEAL @ Faculty of Informatics,
University of Lugano, Switzerland

michele.lanza@unisi.ch

ABSTRACT
CODECITY is a language-independent interactive 3D visualization
tool for the analysis of large software systems. Based on a city
metaphor, it depicts classes as buildings and packages as districts
of a “software city”. By offering consistent locality and solid orien-
tation points we keep the viewer oriented during the exploration of
a city. We applied our tool on several large-scale industrial systems.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance and Enhancement]: Restruc-
turing, Reengineering

General Terms
Languages, Design, Human Factors

1. INTRODUCTION
CodeCity is a language-independent interactive 3D visualiza-

tion tool, developed to support the analysis of large-scaleobject-
oriented software systems. CodeCity revolves around a 3Dcity
metaphor [7, 8], i.e., it represents systems as cities, where classes
are depicted as buildings, and packages as the districts of the city.
One reason that led us to using the city metaphor is that a city,
with its downtown area and its suburbs is a familiar notion with a
clear concept of orientation. Also, a city, especially a large one, is
an intrinsically complex construct which can only be incrementally
explored, the same way that the understanding of a complex sys-
tem increases step by step. Using an all too simple visual metaphor
does not do justice to the complexity of today’s software systems,
and leads to incorrect oversimplifications: Software is complex,
there is no way around this. Lastly, classes are the cornerstone of
the object-oriented paradigm, and together with the packages they
reside in, the primary orientation point for developers. Wedo not
explicitly represent the class internals, because for a large-scale un-
derstanding it is not necessary. Apart from over-plotting problems,
it is also contrary to the way one explores a city: One does notstart
by looking into particular houses.

To depict classes as buildings we extend the polymetric viewap-
proach [4] into 3D, and therefore map software metrics on allthree
dimensions of the buildings. In the following examples, we map
the number of attributes metric for the classes on both the width and
length of the buildings, and the number of methods metric on their
height. Tall buildings thus represent classes with high functionality,
while buildings with a large base represent classes which encode a

Copyright is held by the author/owner(s).
ICSE’08, May 10–18, 2008, Leipzig, Germany.
ACM 978-1-60558-079-1/08/05.

high amount of state. As a linear mapping of a metric value is not
always appropriate, CodeCity supports different mapping mecha-
nisms, described in [8]. Finally, to depict packages as citydistricts,
we use a containment-based layout inspired by rectangle-packing
algorithms and map the nesting level of a package on the colorof
the districtsi.e., the higher the nesting level, the darker the color
hue. We can also represent the nested packages as stacked plat-
forms, thus placing the buildings at different altitudes.

2. CODE CITY
CodeCity supports reverse-engineering activities by represent-

ing the system under investigation as a 3D interactive urbanen-
vironment, in which we can freely move. The city provides an
overview of the system and by navigating around it we can in-
vestigate its structural organization. As with a real city,we get
incrementally familiar with the environment to avoid getting over-
whelmed by the amounts of information such a system carries.One
of Codecity’s prominent features is that, due to the fact that the
user can immerse himself in the visualizations he can contextual-
ize the presented information. Throughout our experimentswith
CodeCity, we applied our approach on several open-source soft-
ware systems, ranging from small and medium-sized systems (e.g.,
JHotDraw, with 30 kLOC and 1,000 classes) to fairly large systems
(e.g., Azureus, with 275 kLOC and about 5,000 classes). In the
following, we describe the main features of CodeCity that provide
support in program comprehension.

City overview. In Figure 1 we see an example of City overview
representing ArgoUML, a 140 kLOC Java system for handling UML
diagrams. The visualization allows us to easily spot some patterns
such as the two massive buildings (potential god classes [6]), some
antenna-shaped constructs, a number of classes looking like park-
ing lots, and a large number of small houses. The visualization
is interactive and navigable using the keyboard,i.e., it is easy to
zoom in on details of the city or to focus on one specific district by
spawning separate windows. The overall goal of the city overview
is to give a first impression of both the magnitude of the system and
the structural distribution of its intelligence.

3. IMPLEMENTATION
CodeCity is written in Smalltalk and built on top of Moose [3],

which provides an implementation of the FAMIX [2] language-
independent meta-model. Since we work with a model and not
directly with the source code, we first need to obtain the former.
For Java and C++ systems we use iPlasma [5] to parse the code
and export the model to an interchange format readable by Moose,
while for building the models of Smalltalk systems we use Moose
itself. Based on the model of the system, we then create interactive
visualizations in CodeCity, using Jun [1] for OpenGL rendering.



Packages

(color depicts nesting level)

 

org

org.argouml

org.argouml.uml

org.argouml.uml.reveng

org.argouml.uml.reveng.java

Classes and interfaces

(width depicts number of attributes,

height depicts number of methods)

FacadeMDRImpl(NOA 3, NOM 349)

JavaRecognizer (NOA 79, NOM 176)   

JavaTokenTypes(NOA 173, NOM 0)

Figure 1: An overview of the city of ArgoUML v.0.24

CodeCity (see Figure 2) provides means to define view configu-
rations, by letting the user specify which model elements tovisual-
ize, the figure types for each element type, the mapping set between
software metrics and visual properties of the figures, layouts, etc.
The created visualizations are interactive, allowing the user on the
one hand to navigate the urban environment (e.g., orbiting, rotation,
panning, moving back and forth) and on the other hand to interact
with the entities by using a query mechanism or manual inspection.

Figure 2: CodeCity in action

Tool Availability. CodeCity runs on every major platform and
will soon be freely available for download at:
http://www.inf.unisi.ch/phd/wettel/codecity.html

4. REFERENCES
[1] A. Aoki, K. Hayashi, K. Kishida, K. Nakakoji, Y. Nishinaka,

B. Reeves, A. Takashima, and Y. Yamamoto. A case study of
the evolution of jun: an object-oriented open-source 3d
multimedia library. InProceedings of International
Conference on Software Engineering (ICSE), 2001.

[2] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 — The
FAMOOS Information Exchange Model. Technical report,
University of Bern, 2001.

[3] S. Ducasse, T. Gîrba, and O. Nierstrasz. Moose: an agile
reengineering environment. InProceedings of ESEC/FSE
2005, pages 99–102, Sept. 2005. Tool demo.

[4] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering.Transactions on
Software Engineering (TSE), 29(9):782–795, Sept. 2003.

[5] C. Marinescu, R. Marinescu, P. F. Mihancea, D. Ratiu, and
R. Wettel. iplasma: An integrated platform for quality
assessment of object-oriented design. InICSM (Industrial and
Tool Volume), pages 77–80, 2005.

[6] A. Riel. Object-Oriented Design Heuristics. Addison Wesley,
Boston MA, 1996.

[7] R. Wettel and M. Lanza. Program comprehension through
software habitability. InProceedings of ICPC 2007 (15th
International Conference on Program Comprehension), pages
231–240, 2007.

[8] R. Wettel and M. Lanza. Visualizing software systems as
cities. InProceedings of VISSOFT 2007 (4th IEEE
International Workshop on Visualizing Software For
Understanding and Analysis), pages 92–99, 2007.

http://www.inf.unisi.ch/phd/wettel/codecity.html

	Introduction
	Code City
	Implementation
	References

