
tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

Tool Building on the
Shoulders of Others

Holger M. Kienle, Adrian Kuhn, Kim Mens,
Mark van den Brand, and Roel Wuyts

S
oftware engineering requires adequate
tool support. Software engineering re-
search is no different. Many research-
ers in this field build and use advanced
tools and prototypes to either validate
their own research ideas or advance the

state-of-the-art in software engineering tools and
techniques. The 2008 European Conference on
Object-Oriented Programming introduced the In-
ternational Workshop on Advanced Software De-
velopment Tools and Techniques, the first work-
shop dedicated to academic tool building. At that
workshop, researchers shared their experiences
and discussed how to build tools more effectively
and efficiently. The 15 tools we looked at covered a
broad range of topics, including refactoring, mod-
eling, behavioral specification, static and dynamic
program checking, user interface composition, and
program understanding.

In this column, we identify four emerging trends
in academic tool development.

Standing on the
Shoulders of Others
Perhaps the most important observation was that
even for research tools, you can gain a significant
advantage by building them on top of existing
tools and frameworks. Although you might think
that every researcher makes his or her own proto-
type tool in isolation, most of the presented tools
relied on external code. In fact, tool builders can
leverage many frameworks, libraries, generative
languages, and open source tools to build on or to
integrate in their own tool. For example, program-
understanding tools can reuse functionality to

parse and analyze the target code, transform and
store it, and visualize it.

One tool that builds on the shoulders of others
is IntensiVE (Intensional Views Environment), a
tool suite for documenting structural source code
regularities (such as design patterns and coding
conventions) in object-oriented software systems
and verifying their consistency during those sys-
tems’ evolution. It builds on the shoulders of many
other tools, including the SOUL (Smalltalk Open
Unification Language) logic metaprogramming
language as a query mechanism, StarBrowser to
present and browse through the regularities, Java-
Connect to access Java parse trees in Eclipse, and
Mondrian to visualize the source code entities.

A big part of IntensiVE’s strength comes from
how it relies on and combines those other tools. It
not only considerably speeds up development but
also enhances the tool’s overall power and qual-
ity, sometimes in ways the original tool develop-
ers didn’t foresee. Such code reuse is advantageous
for both developers and users. Tool developers can
focus on their tool’s novel features without getting
bogged down in low-level plumbing. Also, exter-
nal code written and packaged by domain experts
is often superior to greenfield, greenhorn coding.
On the receiving end, tool users can become more
productive if they already know an abstraction
that the tool reuses, such as a graph description
language or a query language.

Dynamic Languages on the Rise
Our next observation was the prominence of tools
using dynamic languages, primarily Smalltalk but
also Tcl and JavaScript. This is because experimen-

22	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

	 January/February 2009 I E E E S o f t w a r e � 23

Tools of The Trade

tal prototypes and tools are subject to continually
changing requirements and research insights. The
development of such tools is thus highly incre-
mental, continually requiring rapid adaptations
and evolutions. Dynamic-language environments
meet these requirements while offering adequate
tool performance.

For example, CodeCity is a highly interac-
tive tool that visualizes software in 3D, follow-
ing a city metaphor. The city’s buildings represent
classes, which are placed in districts representing
the packages. CodeCity is implemented in Small-
talk. Furthermore, it provides a scripting ab-
straction based on Smalltalk that lets you easily
reconfigure a visualization and experiment with
different visualization approaches on-the-fly. For
research on programming-language design and
software development environments such as the
Hopscotch framework, having a dynamic lan-
guage as both the implementation and develop-
ment language results in an ideal playing field for
experimentation.

Tools as Web 2.0
Bandwagon Jumpers
Third, we noted that several tools deliberately ei-
ther represent themselves as Web 2.0-like applica-
tions (Churrasco and the Small Project Observa-
tory) or take inspiration from Web metaphors to
provide novel user interfaces (such as Hopscotch’s
use of a back button, history, links, and so on for
browsing source code). Churrasco supports col-
laborative program understanding based on Web
2.0. Once developers set up a project by point-
ing Churrasco to the project’s SVN (Subversion)
repository, they can explore the code through a
variety of interactive visualizations. They can an-
notate software views with textual notes that are
immediately visible to other developers. By ex-
ploiting recent Web 2.0 technologies and Scalable
Vector Graphics with embedded JavaScript for
rendering, Churrasco incorporated all this func-
tionality in a Web browser. For tool users, this
means that the tool is available without instal-
lation (aside from missing plug-ins), is accessible
from different platforms, and stores application
data in the “computing cloud.”

However, tools don’t necessarily have to go
Web 2.0. The CScout refactoring browser tackles
the complex task of refactoring untamed C code.
The tool has a vanilla HTML interface that sup-
ports renaming identifiers. However, it also pro-
vides hyperlinked code browsing and form-based
querying and metrics calculations on identifiers,
functions, and files. CScout generates Web pages
identified by unique URLs, so users can book-
mark them for easy access.

Moore’s Law Helps Not
Just Fancy Office Suites
Our final observation was that many tools used to
struggle with large, real-world code bases, not only
because such code exhibits many idiosyncrasies but
also because of performance problems in terms of
space and time. Even though the targeted systems’
complexity has also increased, Moore’s law seems
to have come to many tools’ rescue. Until recently,
processing large real-world systems would have
been beyond most program-understanding tools.
Such targets are now in reach, as demonstrated
by CScout, which processes the Linux kernel (4.1
MLOC) in a bit less than 7 1/2 hours. To accom-
plish this, CScout places high demands on comput-
ing resources (multigigabyte memory and a 64-bit
CPU).

Established tools also profit from Moore’s law.
Over the last 10 years, the Rigi reverse-engineering
environment has been able to process code bases
of increasing size without rewriting a single line of
code.

In addition, Moore’s law helps make tools more
interactive. Integrating CScout into an integrated
development environment (for example, for inter-
active refactoring) seems feasible for smaller (up
to 10 KLOC) projects. CScout can process awk (6
KLOC) in less than a second. CodeCity is another
example where increasing computing power trans-
lates into a more powerful tool. Even though 3D
rendering is demanding and based on a Smalltalk
OpenGL library, CodeCity manages fluid visualiza-
tion of, and interaction with, a megacity compris-
ing nine systems that make up more than 17,800
classes.

W e invite you to go to the workshop Web site
(http://smallwiki.unibe.ch/wasdett2008/
tools), take a closer look at the exciting tools

that we could only briefly mention here, and try
them out. You can even be bold and stand on their
shoulders!

Holger M. Kienle is a postdoctoral researcher in the University of
Victoria’s Computer Science Department. Contact him at kienle@cs.uvic.
ca.

Adrian Kuhn is a PhD student in the University of Bern’s Software
Composition Group. Contact him at akuhn@iam.unibe.ch; www.twitter.
com/akuhn.

Kim Mens is a full-time professor at the Université catholique de
Louvain-la-Neuve’s Department of Computing Science and Engineering.
Contact him at kim.mens@uclouvain.be.

Mark van den Brand is a full-time professor of software
engineering and technology at the Eindhoven University of Technology.
Contact him at m.g.j.v.d.brand@tue.nl.

Roel Wuyts is a senior research engineer in the independent not-for-
profit research institute IMEC and a professor in Katholieke Universiteit
Leuven’s Computer Science Department. Contact him at wuytsr@imec.be.

Even though
the targeted

systems’
complexity has
also increased,

Moore’s law
seems to have
come to many
tools’ rescue.

