
Archeology of Code Duplication:
Recovering Duplication Chains From Small Duplication Fragments

Richard Wettel Radu Marinescu

LOOSE Research Group
Institute e-Austria Timişoara, Romania

{wettel,radum}@cs.utt.ro

Abstract

Code duplication is a common problem, and a well-
known sign of bad design. As a result of that, in the last
decade, the issue of detecting code duplication led to
various solutions and tools that can automatically find
duplicated blocks of code. However, duplicated fragments
rarely remain identical after they are copied; they are
oftentimes modified here and there. This adaptation usually
“scatters” the duplicated code block into a large amount
of small “islands” of duplication, which detected and
analyzed separately hide the real magnitude and impact
of the duplicated block. In this paper we propose a novel,
automated approach for recovering duplication blocks, by
composing small isolated fragments of duplication into
larger and more relevant duplication chains. We validate
both the efficiency and the scalability of the approach by
applying it on several well known open-source case-studies
and discussing some relevant findings. By recovering
such duplication chains, the maintenance engineer is
provided with additional cases of duplication that can lead
to relevant refactorings, and which are usually missed by
other detection methods.

Keywords: code duplication, design flaws, quality

assurance

1 Introduction

Duplicating code, while easy and cheap during the de-

velopment phase, moves the burden towards the already

overloaded and much more expensive maintenance phase.

Fowler and Beck ranks it first in their list of “bad smells in

code” [6] and we strongly believe they were right. There-

fore we don’t intend to emphasize the consequences of in-

troducing duplicated code anymore.

In order to ensure that the code says everything once and

only once, the duplicated code has to be refactored. Spot-

ting it can sometimes be obvious, but most of the time it is

more subtle or easy to miss, especially with industrial-size

software systems. Detection and analysis of the code dupli-

cation in legacy systems without powerful and reliable tool

support is hard to imagine. This is why we consider that de-

tecting clones and quantifying them is essential for further

design improvement.

Throughout the last decade, there have been many ap-

proaches to detect duplicates. Some of the actual tools are

able to detect slightly adapted code (variables, constants

and methods renaming), while still overlooking larger-scale

adaptations, i.e., inserted or deleted lines of code.

In a typical lightweight line-based approach, large

blocks of code affected by various modifications (from

renaming operations to statement insertions or removals)

would wrongly be identified as small, less important frag-

ments of duplicated code, apparently not related to each

other.

To address this issue, we propose an approach that

merges such small fragments that belong together, thus

providing the maintainer with some additional duplication

blocks, otherwise granted with less importance or not de-

tected at all (due to filtering).

1.1 Outline

The paper is further structured as follows: Section 2

presents the concept of duplication chain and other related

terms, placed in the archeology metaphor context. Section 3

is a detailed presentation of our approach. Section 4 walks

the steps we took to validate the approach, proving that it

brings real benefits to maintenance. Section 5 will make a

brief description of the related work and current concerns in

this field of research, and finally Section 6 will point out the

advantages and disadvantages of the presented approach,

ending with a short presentation of our future work.

2 The Archeology Metaphor

Like an archeologist who puts together all the ruins of an

ancient village in order to build a complete picture, rather

than analyzing each artifact separately, we try to recover a

close representation of every scattered duplicated block, in

order to make the right refactoring decisions.

2.1 It started with a Scatter-Plot

The scatter-plot approach was successfully applied in the

code duplication detection field starting with the early ’90s

[1], [4], [5]. These approaches provide the maintenance en-

gineer with textual information (sets of longest matches),

but mainly with a visual representation in form of a scatter-

plot (or dotplot), which can draw attention over “grey” areas

of the matrix, possibly hosting duplicated code. From here,

the specialist would further investigate the results.

The scatter-plot inspired us in the first place and our al-

gorithm is based on this visual concept. It also provides an

easy way to present the ideas behind our approach through-

out this paper.

2.2 Need for duplication chains

Imagine we have the two pieces of Java code from Fig-

ure 1, which is a trivial example of scattered duplication

belonging to a single duplicated block. Despite the fact that

it seems obvious that they have common origins, due to the

deleted and modified lines of code, they could be detected

as 3 smaller clones, which is rather false. In a more pes-

simistic scenario, they would be filtered out by the mini-

mum length threshold. One could rightly argue that there

are approaches which can detect variables renaming. What

if the lines of code are modified further than just variables

or if there are lines appearing in only one of the two code

fragments?

initSensors(tSensors);
readSensors(tSensors);
lcd.init();
int i = 0;
while(i<tSensors.length){
 t[i]=tSensor[i].getTemp();

lcd.println("T"+i+"="+t[i]);
 i++;
}
regulateTemp(temp);

initSensors(tSensors);
readSensors(tSensors);

int i = 0;
while(i<tSensors.length){
 temp[i]=tSensor[i].getTemp();

System.out.println("T"+i+"="+t[i]);
 i++;
}
regulateTemp(temp);

Figure 1. Scattered duplication

Moreover, detected clones might not be relevant if they

are too small or analyzed in isolation. Our main goal is

to capture, along with the usual clones, blocks of scattered

clones that may have common origin, which we will further

refer to as duplication chains.

2.3 Anatomy of a duplication chain

A duplication chain can be a complex element (the rep-

resentation of the recovered duplicated code block), com-

posed of a number of smaller exact clones (further referred

as exact chunks), separated pairwisely by non-matching

gaps. Figure 2 illustrates the previous example’s scatter-

plot representation, where each marked cell corresponds to

a match between the pair of lines of code intersecting in that

precise point.

exact chunk (2)
exact
chunk (3)

exact
chunk (3)

non-matching
gap (1, deleted)

non-matching
gap (1, modified)

Figure 2. Duplication chain

An exact chunk is a non-altered part of a duplicated

block, or in the context of the archeology metaphor an arti-

fact found in its place. Exact chunks appear in a scatter-plot

as continuous diagonals, as it can be seen in Figure 2.

A non-matching gap reflects the changes that have been

made to the originating duplicated block, in terms of lines of

code (insertion, deletion, modification). Thus, while appar-

ently less important in clone detection, these non-matching

parts provide us with extra information about the adaptation

process. In a scatter-plot representation, non-matching gaps

appear as shortest non-marked paths linking two consecu-

tive diagonals (Figure 2).

Two closely related characteristics of a duplication

chain, directly influenced by the adaptation process are the

type and the signature. The type of the duplication chain

provides a summary of the adaptations made to the dupli-

cation block. We identified the following types of dupli-

cation chains: exact (regular clones, which did not suffer

any adaptation), modified (duplication chain made of exact

chunks linked by gaps composed of modified lines of code),

insert/delete (chain with insert/delete gaps) and composed

(exact chunks linked by various gap types).

The signature further extends the meaning of the type

by capturing the structural configuration in terms of exact

chunks, non-matching gaps and the metrics around them.

Placed in the archeological context, the signature could be

associated with a ”map” storing the places where all the re-

lated items where discovered. The signature of the previous

example is ”E2.D1.E3.M1.E3”, which describes two code

fragments having 3 exact (E) chunks of sizes 2, 3 and 3,

separated by 2 non-matching gaps: one with 1 deleted (D)

line and the other with 1 modified (M) line of code.

2.4 Proportional Harmony

In the context of size, we want to capture only those code

fragments pairs that contain a significant amount of dupli-

cation. While an exact clone is significant if the clone’s

size is larger than a threshold, a significant duplication chain

must also be proportionally harmonious. First, we will de-

fine some metrics related to these proportions, all of them

measured in number of lines of code (LOC):

• Size of Exact Chunk (SEC) is a key metric that re-

flects the degree of the granularity left behind by the

adaptation phase of the copy-paste-adaptation process.

Furthermore, SEC is closely related to how painful the

refactoring to eliminate this duplication could be.

• Line Bias (LB) is the size of a non-matching gap be-

tween two consecutive exact chunks. Its value may al-

low us to decide if two exact chunks belong to the same

duplicated block, since it provides a measure of dis-

tance between them. The lower the distance (LB), the

higher the probability that the two exact chunk are part

of the same duplication block and possibly the higher

the refactoring potential.

• Size of Duplication Chain (SDC) is the size of the more

meaningful block of duplication, which actually sug-

gests its magnitude. In the particular case of an exact

type duplication chain, SDC is the same as SEC.

In order to constrain the duplication chain’s proportions,

we will impose the following thresholds:

• a minimum SDC, whose task is to ensure that the to-

tal length of the duplication chain is large enough to

qualify it as significant,

• a minimum SEC, in order to avoid detecting duplica-

tion chains containing “duplication crumbs” i.e., very

small duplicated code fragments,

• a maximum LB, which quantifies the “neighborhood”

aspect as it will make sure that the consecutive pieces

of the chain are not too far from each other.

Since it is not desirable to detect duplication chains with

gaps larger than its exact chunks, we should also make sure

that: minimum SEC ≥ maximum LB.

There is no such things as a perfect threshold value.

Still, from our experience we found that the following

threshold values are generally adequate: minimum SDC

= 8, maximum LB = 2 and minimum SEC = 3. The

minimum SDC of 8 is justified because we considered that

a significant duplication chains should be larger than the

minimum configuration duplication chain of 2 exact chunks

with SEC of 3, separated by a minimum length (LB of 1)

non-matching gap.

3 Approach

In this paper, we propose a lightweight line-matching

approach, enhanced with the concept of chain duplication,

which can also cover duplications that cannot be detected

by regular line-matching approaches.

3.1 Stepwise Recovery Methodology

Our approach walks the first steps of a usual scatter-plot

approach, enhancing it with an additional step which builds

the duplication chains. The phases of our detection process

are:

Phase 1: Code Preprocessing The first phase starts by

reading the source-files line by line, eliminating the white

spaces, so that the various indentation styles would not

make any difference. Then we eliminate noise (i.e., lines of

code made of syntactic elements like a single closing brace

or empty lines), which is defined in a file in form of a set

of regular expressions. An optional feature, and at the same

time the only language-dependent part of our approach, is

the possibility to ignore comments in the analysis process.

This phase provides a set of relevant (noise free) lines of

code in a raw form (without white spaces).

Phase 2: Populate the scatter-plot As in a regular

scatter-plot approach, we compare every line of code

(specifically, relevant code) with every line of code in the

project. Every matrix cell M[i,j] will store the result of the

comparison between the relevant line i and the relevant line

j. As a result of this comparison, the matrix will be divided

in two symmetric areas, around the main diagonal. Our ap-

proach works with only one half of the matrix (excluding

the diagonal) to avoid storing redundant information.

Phase 3: Build the duplication chains Starting with the

upper left corner of the matrix, we look for the first marked

cell. This is a starting point for a potential valid exact chunk

(and in the same time, for a duplication chain), which will

be further extended up to the first unmarked cell on the main

diagonal direction. The current exact chunk will be con-

sidered a valid one if its size exceeds the minimum SEC

threshold, in which case the exact chunk is linked to the end

of the current duplication chain candidate. Then we con-

tinue searching in the vicinity for another exact chunk, by

increasing our “sight”. If another valid exact chunk is found

nearby while the maximum LB threshold was not exceeded,

it is added to the duplication chain candidate. In the end,

when the expansion of the chain candidate is not possible

anymore, its size is measured and if it proves to be larger

than the minimum SDC threshold, the candidate is declared

valid and it is added to the list of found duplication chains

(results). In the same manner the search is repeated until we

reach the lower right corner of the matrix.

A scatter plot representation, augmented with the com-

pared lines is illustrated in a more complex example, an

adapted duplication that summarizes all the types of opera-

tions on the lines of code (Figure 3).

E2
M1

E3

I2

E2
D1

E2

To
be,
or

not
to

be:
that

is
out of

the
question

To be
,

or
 m

ay
be

no
t

to be
:

th
at

is th
e

qu
es

tio
n

so
m

eo
ne

sa
id

type: COMPOSED
signature: E2.M1.E3.I2.E2.D1.E2

Figure 3. Complex duplication chain

3.2 Tracking the duplication chains

For an even better understanding of our methodology,

we will present a pseudo-code description of the main al-

gorithm used by the proposed approach for the detection of

code duplication chains:

program DuplicationDetection
for every entity E[i] in the project
for every entity E[j], with j>i+1

Area := area between E[i] and E[j];
PopulateScatterPlot(Area);
L := BuildDupChains(Area);
add list L to ResultList;

end for
end for
return ResultList;
end program

In order to increase the scalability, instead of processing

the whole matrix at one time, we split the matrix into areas,

based on pairwise intersecting entities (i.e., source files or

method bodies).

procedure PopulateScatterPlot(Area)
for every line L in Area
for every column C in Area,

starting with L+1
if code(L) matches code(C)

then mark M[L,C] as unused;
end if

end for
end for
end procedure

Every line of the matrix is compared to every one of its

columns. Every cell representing a match between the lines

of code that intersect in that specific point is marked as “un-

used match”, as long as it has not been part of a duplication

chain.

procedure BuildDupChains(Area)
for every line L in the Area
for every M[L,C] marked as unused
create list of coordinates CList;
add M(L,C) coordinates to CList;
while GetNextCoordinate(C,L) is valid

add its coordinates to CList;
update SEC

end while
if SEC < minimum SEC threshold

remove the coordinates of the
last exact chunk from CList;

end if
if SDC(CList) > minimum SDC

chain := CreateDupChain(CList);
add chain to LocalResultList;

end if
end for

end for
return LocalResultList;
end procedure

The GetNextCoordinate method searches the coordinate

of a potential expansion point. If the next natural cell is

marked as “unused match” it returns its coordinate. Else, it

searches further by stepwise increasing the LB until either

a valid coordinate was found or the LB reached the maxi-

mum LB threshold. In the latter case, there is no next valid

coordinate.

The CreateDupChain method creates a duplication

chain out of a list of coordinates, tracing its signature and

every other characteristic. Finally it marks the cells in the

list as “used matches”, to avoid reusing them for building

other duplication chains.

4 Validating the Approach

In order to prove the efficiency of our approach, we ap-

plied it against several open-source projects. Our purpose

was to demonstrate the advantages over traditional code du-

plication detectors. Besides presenting the tool itself, we

will discuss the results of our experiment.

4.1 Tool Support

We designed and implemented an automated line-based

language-independent code duplication detector, called

DuDe (Figure 4).

Figure 4. DuDe (Duplication Detector)

This non-visual tool, based on a visual model we call en-

hanced scatter-plot can be used in two contexts: either as a

stand-alone tool, in which case its input consists of source

files or as part of an integrated platform for quality assess-

ment of object-oriented design called iPlasma [9], in which

case a set of method bodies is provided as input.

Its flexibility is conferred by the tunable parameters,

which can widen or narrow down the results of the detec-

tion, depending on the purpose of the analysis. To filter

the results of the detection, the minimum SDC parameter

should be increased, until the “noise” (short duplicates, less

interesting for the refactoring phase) is bearable. The upper

limit for the distance between two consecutive exact chunks

within the same duplication chain can be modified by tun-

ing the maximum LB parameter, while the size of the exact

chunks can be imposed by way of minimum SEC parameter.

Although the examples throughout the paper are pre-

sented in a scatter-plot representation, instead of presenting

the problem areas in a graphical representation like a regular

scatter-plot approach, the tool will provide a list of duplica-

tion chains. This allows the engineer to jump to the analysis

of these candidates by means of the duplicated code visual-

ization feature, rather than picking them first. Moreover,

the list can be sorted using multiple criteria (entity, starting

line, ending line, type, signature, size), thus providing the

means for further interesting analyses.

The duplicated code for the selected chain is presented

in highlight in the code visualization panel, an important

feature for the process of manual validation of the results

(which we extensively used in our experiments). Further-

more, the results can be exported in XML format and then

imported, a useful feature for analysis session resuming.

4.2 Experimental Setup

For the first experiment, we chose 4 Java and 4 C

projects, the same study cases from Bellon’s paper on eval-

uation of clone detecting tools [3].

The 8 projects, covering the size range from 0.5 MB to

10 MB, are presented in Figure 5, along with the experi-

ment’s results. The table is composed of the projects pre-

sentation and the comparison between the results obtained

by our approach and the ones that a regular line-based ap-

proach would have provided. For every project we included

its name, the programming language used (PL), number of

files (NOF), size on disk and number of thousands of lines

of code (KLOC).

The purpose of the experiments was to answer questions

regarding four precise issues:

1. Quantitative issue: is there any gain of duplication pro-

vided by our approach over regular line-based clone

detectors?

2. Qualitative issue: how relevant, in the refactoring con-

text, are the additional duplications?

3. Reliability issue: how reliable are the results, in terms

of precision and recall?

4. Scalability issue: does our approach scale up?

4.3 Quantitative Validation

We established the minimum SDC of 7 LOC for both

configurations. Then, we tuned DuDe to simulate a regular

line-based code duplication detector, unable to recover du-

plication chains, by disabling the duplication chain building

feature. To do this, we just set a maximum LB of 0 (no link-

ing between exact chunks).

In the second configuration, we kept the minimum SDC

of 7, which we further combined with a maximum LB of 2

and a minimum SEC of 2, enabling the recovery of duplica-

tion chains.

The results obtained with the two configurations are pre-

sented in terms of number of duplication chains (NODC)

Project Name PL NOF Size (MB) KLOC NODC COV (%) NODC COV(%)
weltab C 65 0.43 11 759 72 711 76
cook C 590 2.68 80 1,285 9 1,744 16
snns C 420 4.82 115 47,930 16 53,274 21
postgresql C 612 9.52 235 704 8 1,070 11
netbeans-javadoc Java 101 0.68 14 39 12 48 15
eclipse-ant Java 178 1.43 35 14 2 24 4
eclipse-jdtcore Java 741 6.90 148 716 12 1,127 16
j2sdj1.4.0-javax-swing Java 538 8.39 204 1,171 7 1,388 10

Regular approach Our approach

Figure 5. Experiment Results

and coverage1 (COV). After comparing the result tables we

observed that:

• judging by NODC, it is obvious that our enhanced ap-

proach provides in almost every case more duplica-

tions

• COV is always larger in the case of our approach. A

proof that this approach provides additional duplica-

tions (chains) is the increase of coverage from the tra-

ditional to the duplication chain approach. The dupli-

cation chain detection has higher coverage because it

recovers larger duplications out of smaller chunks of

duplication, overlooked by the first approach. In some

extreme cases, the coverage detected by the second ap-

proach is twice as high as the coverage provided by the

first one.

Concluding this experiment, we are able to answer the

first question by stating that our “archeological” approach

does offer an important amount of otherwise lost code du-

plication information.

4.4 Qualitative Validation

For our second experiment we picked an open-source

software system called JHotDraw. We ran the tool against

the JHotDraw source code and simulated a search with a

tool without support for duplication-chains (minSDC = 8,

maxLB = 0) and we obtained 42 duplication chains, all of

type exact. Then we ran the tool with minSDC = 8, maxLB

= 2, minSDC = 3. We obtained 72 duplication chains of

different types. It is clear that we got 30 extra duplication

chains in our approach, a fact that confirms once more the

quantitative gain. Then, we extracted the 30 new found du-

plication chains and analyzed them one by one.

1Coverage is the percentage of lines of code in the system affected by

duplication

Summing up this experiment, we found that in 76 % of

the cases the found duplication were relevant, having a high

refactoring potential (e.g., sets of methods belonging to re-

lated classes with a common superclass). These results re-

assures us that it makes sense to recover duplication chains,

since the clone detection is often just an intermediate step

towards refactoring.

4.5 Reliability Validation

The clone detecting tools are evaluated in terms of preci-
sion2 and recall3. Perfect recall means all duplications are

found, while perfect precision means no false positives are

reported. In order to calculate the precision and recall of

our approach, we need a reference set of clones for a cer-

tain system, which is a high desiderate and really hard to

achieve, as stated in [15]. Such a reference set could be

built by running a perfect tool on the system and storing the

results. But we all know such a tool does not exist.

The solution adopted by Bellon [3] in his experiment was

to merge the results provided by the clone detectors he com-

pared, and to leave to a group of human arbiters the task to

“manually” filter these results. Besides the fact that only 2

% of the data was reported at the end of that experiment,

taking that set as a reference could lead us to some prob-

lems: if our tool is able to find clones not found by any of

the tools that participated at building the reference set, these

new and valid clones would not be present in the reference

set. The precision is strictly related to this aspect.

What we found fair was to take out the reference duplica-

tions belonging to the biggest project (eclipse-jdtcore) and

to run our tool on that project. After that, we would search

the clones in the reference set in our results. We chose type

1 clones (exact clones) to test the recall of our tool on that

2Precision refers the percentage of correct results
3Recall refers the percentage of the clones that are found

type of clones. Out of 120 clones, our tool found 107 of

the clones, 7 of the clones were covered by larger clones

found by our tool, and 6 were missed. After analyzing the

missed clones, it was clear that these clones were detected

by token-based detectors (finer granularity) and cannot be

detected by any line-based detector.

Concluding, under the strict conditions of Bellon’s ex-

periment [3] our approach had a 89 % recall, but in a more

loose context (also considering the 7 clones found in larger

duplication chains) the recall could rise up to 95 %.

4.6 Scalability Validation

For this purpose we present you some data on the scal-

ability of the tool and on time performance. The largest

project we successfully run our tool against was a project

of 74 MB of C source code containing over 800,000 LOC.

The experiment has been conducted on a machine with an

Intel Pentium 4 processor at 2.8 GHz, with 1 GB of RAM.

The detection process lasted about 4 hours, which is an ac-

ceptable amount of time for such an industrial-size project.

This project was not included in the test-case validation due

to non-disclosure reasons.

5 Related work

Software duplication has been a focus of research for at

least a decade and dozens of papers on the topic have ap-

peared.

Baker, in her 92 paper [1] proposed a tool called Dup

with a line-based approach, which offers visual information

(scatter plot) and can also look for parameterized matches

(variables, constants).

Church and Helfman [4] proposed Dotplot, a visual tool

that works with tokens of various granularity (words, lines).

The observations made on different visual patterns are basis

for most of the duplication chains types that we identified.

Mayrand et al. [10] proposed an interesting approach for

detecting code duplication: based on metrics extracted from

the source code by another tool (Datrix), they established

function similarities.

A novel approach based on abstract syntax trees was

proposed by Baxter et al. in [2], which can produce

macros bodies to eliminate duplication. Due to its inter-

nal representation (ASTs), this tool is strongly language de-

pendent, can be run only against compilable systems and

has higher memory requirements than our lightweight ap-

proach. It is also able to find what we call modified dupli-

cation chains, but it misses our insert/delete or combined

duplication chains.

Duploc [5] is a line-based approach visual tool that pro-

vides the scatter plot as output and can perform pattern

matching over it to detect clones. It can also detect some

clones similar to our modified duplication chains (but with

only one gap in the middle). However, it misses our in-

sert/delete and combined duplication chains. Moreover,

there were some scalability problems reported in [3] with

larger systems.

Another interesting approach was Krinke’s [8] one,

which is focused on detecting maximal similar subgraphs

in fine-grained PDGs (program dependence graphs). Still,

as he states, this approach cannot analyze big programs

due to the limitations of the underlying PDG-generating in-

frastructure.

An interesting contribution was the one that Kamiya

et al. proposed in [7]. Their token-based tool, called

CCFinder is based on suffix tree matching algorithms.

While the tool itself is not able to find gapped clones, in [14]

the authors address this issue, supported by their mainte-

nance environment called Gemini [13]. By combining the

exact clones provided by CCFinder, Gemini proves to be

more precise than any line-based approach (due to its finer

level of granularity) with the price of language dependency.

The idea of analyzing the non-matching parts of the du-

plication also appeared in [12], where the authors used it

to observe evolution between several versions of a software

system.

Regarding the concern towards validation in terms of re-

call and precision of clone detecting tools, Bellon [3] con-

ducted an experiment, whose main concern was to compare

the quality of the results provided by several tools ([2], [7],

[8], [5] and [10]). As a conclusion to that experiment, the

author stated that there was no absolute winner, every ap-

proach implying both advantages and disadvantages.

6 Conclusions and Future Work

6.1 Pros and Cons

One of the major advantages of the approach presented

in this paper is that it provides additional duplications to

the ones detectable by other traditional methods. Moreover,

it brings to light smaller duplication fragments, otherwise

hardly noticeable, which belong to a bigger, more important

duplication block. By doing this, it ensures that the refac-

toring decisions are made with improved comprehension of

the big picture, i.e., it provides support for proper refac-

toring. The support tool proved some industrial strength it

terms of scalability and language-independence. Further-

more, the flexibility provided by means of its parameters

can lead to customized detection methodologies, that fit par-

ticular maintenance focuses.

As for the drawbacks, the tool is not capable of detecting

renamed variables, due to its rather high granularity of com-

parison, although some of these are covered by duplication

chains of type modified.

6.2 Future Plans

With the disadvantages of this approach in mind, we will

formulate some possible directions of improving this solu-

tion. First, to address the problem of coarse granularity, we

think that a fuzzy comparison would make an improvement.

Instead of a boolean result, the comparison would provide a

fractionary result, which would answer the question “How

much are they alike?”. With such a comparison method,

the tool would combine the advantages of a classical token-

based duplication detector with the novel duplication chain

recovery approach.

Introducing complementary visualization representa-

tions of the duplication chains would be another priority on

our list. In this context, there is an ongoing interest on ad-

vanced visualization techniques for code duplication [11].

In extension to these desiderates, we would be interested

in researching on the information we could extract from the

signatures of code duplication chains and to provide assis-

tance in the refactoring process, based on identified pat-

terns.

7 Acknowledgments

This work is supported by the Austrian Ministry

BMBWK under Project No. GZ 45.527/1-VI/B/7a/02. We

would also like to thank the LOOSE Research Group (LRG)

for being such a great and challenging team.

References

[1] Brenda S. Baker. A Program for Identifying Dupli-

cated Code. Computing Science and Statistics, 24:49–

57, 1992.

[2] Ira Baxter, Andrew Yahin, Leonardo Moura,

Marcelo Sant’ Anna, and Lorraine Bier. Clone De-

tection Using Abstract Syntax Trees. In Proceedings
ICSM 1998, 1998.

[3] Stefan Bellon. Vergleich von Techniken zur Erken-

nung duplizierten Quellcodes. Master’s thesis, Uni-

versität Stuttgart, September 2002.

[4] Kenneth Ward Church and Jonathan Isaac Helfman.

Dotplot: A program for exploring self-similarity in

millions of lines for text and code. J. Computational
and Graphical Statistics, 2(2):153–174, June 1993.

[5] Stéphane Ducasse, Matthias Rieger, and Serge De-

meyer. A language independent approach for detect-

ing duplicated code. In Hongji Yang and Lee White,

editors, Proceedings ICSM ’99 (International Con-
ference on Software Maintenance), pages 109–118.

IEEE, September 1999.

[6] Martin Fowler, Kent Beck, John Brant, William

Opdyke, and Don Roberts. Refactoring: Improving
the Design of Existing Code. Addison Wesley, 1999.

[7] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro

Inoue. CCFinder: A multi-linguistic token-based

code clone detection system for large scale source

code. IEEE Transactions on Software Engineering,

28(6):654–670, 2002.

[8] Jens Krinke. Identifying similar code with program

dependence graphs. In Proceedings Eigth Work-
ing Conference on Reverse Engineering (WCRE’01),
pages 301–309. IEEE Computer Society, October

2001.

[9] C. Marinescu, R. Marinescu, P.F. Mihancea, D. Raţiu,

and R. Wettel. iPlasma: An integrated platform for

quality assessment of object-oriented design. In 21st
IEEE International Conference on Software Mainte-
nance (ICSM’05), September 2005.

[10] Jean Mayrand, Claude Leblanc, and Ettore M. Merlo.

Experiment on the automatic detection of function

clones in a software system using metrics. In Interna-
tional Conference on Software System Using Metrics,

pages 244–253, 1996.

[11] Matthias Rieger, Stéphane Ducasse, and Michele

Lanza. Insights into system-wide code duplication. In

WCRE, pages 100–109, 2004.

[12] F.Van Rysselberghe and S. Demeyer. Reconstruction

of successful software evolution using clone detection.

In International Workshop on Principles of Software
Evolution (IWPSE), pages 126–130, 2003.

[13] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto,

and Katsuro Inoue. Gemini: Maintenance support en-

vironment based on code clone analysis. In Eighth
IEEE International Symposium on Software Metrics
(METRICS’02), pages 67–76, Gold Coast, Australia,

June 2002. IEEE.

[14] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto,

and Katsuro Inoue. On detection of gapped

code clones using gap locations. In Proceedings
Ninth Asia-Pacific Software Engineering Conference
(APSEC’02), pages 327–336, Gold Coast, Australia,

December 2002. IEEE.

[15] Andrew Walenstein, Nitin Jyoti, Junwei Li, Yun Yang,

and Arun Lakhotia. Problems creating task-relevant

clone detection reference data. In WCRE, pages 285–

295, 2003.

