Archeology of Code Duplication :
Recovering Duplication Chains From Small Duplication Fragments

Richard Wettel

Radu Marinescu

LOOSE Research Group
Institute e-Austria Timisoara, Romania
{wettel,radum }Qcs.utt.ro

Abstract

Code duplication is a common problem, and a well-
known sign of bad design. As a result of that, in the
last decade, the issue of detecting code duplication led
to various solutions and tools that can automatically
find duplicated blocks of code. However, duplicated
fragments rarely remain identical after they are copied;
they are oftentimes modified here and there. This
adaptation usually ”scatters” the duplicated code block
into a large amount of small 7islands” of duplication,
which detected and analyzed separately hide the real
magnitude and impact of the duplicated block. In
this paper we propose a mnovel, automated approach
for recovering duplication blocks, by composing small
isolated fragments of duplication into larger and more
relevant duplication chains. We wvalidate both the
efficiency and the scalability of the approach by apply-
ing it on several well known open-source case-studies
and discussing some relevant findings. By recovering
such duplication chains, the maintenance engineer is
provided with additional cases of duplication that can
lead to relevant refactorings, and which are usually
missed by other detection methods.

Keywords:
ity assurance

code duplication, design flaws, qual-

1 Introduction

Duplicating code, while easy and cheap during the
development phase, moves the burden towards the al-
ready overloaded and much more expensive mainte-
nance phase. Fowler and Beck ranks it first in their
list of ”bad smells in code” [6] and we strongly believe
they were right. Therefore, we will not emphasize the
consequences of introducing duplicated code.

In a line-based approach, large blocks of code af-
fected by modifications (renaming of variables or even
statement insertions or removals) would be identified
as small, less important fragments of duplicated code,
apparently not related to each other.

To address this issue, we propose an approach that
can merge such small fragments that belong together
and provides the maintainer with some additional du-
plication blocks otherwise granted with less impor-
tance.

2 The Archeology Metaphor

Like an archeologist who puts together all the ru-
ins of an ancient village in order to build a complete
picture, rather than analyzing each artifact separately,
we try to recover a close representation of a scattered
duplicated block, in order to make the right refactoring
decisions.

2.1 It Started with a Scatter-Plot

The scatter-plot approach, successfully applied in
the code duplication detection field starting with the
early '90 ([1], [4], [5]), uses a visual representation
that can point out "dark” areas, which possibly host
problems. Our approach provides the reengineer with
results in form of a list of duplication chains. However,
since the visual idea of a scatter-plot is behind our
detection algorithm, we chose it as a means to illustrate
the various concepts throughout this paper.

2.2 Need for Duplication Chains

Imagine we have the two pieces of Java code from
Figure 1. Despite the fact that it seems obvious that
they have common origins, due to the deleted and mod-
ified lines of code, they could be detected as 3 smaller

clones, which is rather false. In a more pessimistic
scenario, they would be filtered out by the minimum
length threshold. One could rightly argue that there
are approaches which can detect variables renaming.
What if the lines of code are modified further than just
variables or if there are lines appearing in only one of
the two code fragments?

initSensors(tSensors);
readSensors(tSensors);

initSensors(tSensors);
readSensors(tSensors);

led.init(); inti=0;
inti=0; while(i < tSensor.length){
while(i < tSensors.length) { temp[i] =tSensorfi].getTemp();
temp[i] =tSensors[i].getTemp(); System.out.println("'T"+i+"="+templi]);

led.println("T"+i+"="+templi); i+t

i+ }
} regulateTemp(temp);
regulateTemp(temp);

Figure 1. Scattered duplication

Moreover, detected clones might not be relevant if
they are too small or analyzed in isolation. Our main
goal is to capture, along with the usual clones, blocks of
scattered clones that may have common origin, which
we will further refer to as duplication chains.

2.3 Anatomy of a Duplication Chain

A duplication chain can be a complex element (the
representation of the recovered duplicated code block),
composed of a number of smaller, exact clones (further
referred as exact chunks), separated pairwise by non-
matching gaps. Figure 2 illustrates the previous ex-
ample’s scatter-plot representation, where the marked
cells correspond to the matching pair of lines of code
intersecting in that precise point.

non-matching
gap (1, deleted)

non-matching
gap (1, modified)

Figure 2. Duplication chain

An ezact chunk, put in the context of the archeology
metaphor, is a non-altered part of a duplicated block,
that preserved its identity. An exact chunk appears in
a scatter-plot as a continuous diagonal, as it can be
seen on Figure 2.

A non-matching gap reflects the changes that have
been made to the originating duplicated block, in

terms of lines of code (insertion, deletion, modifica-
tion). Thus, while apparently less important in clone
detection, these non-matching parts provide us with
extra information about the adaptation process. In a
scatter-plot representation, non-matching gaps appear
as shortest non-marked paths linking two consecutive
diagonals (Figure 2).

A characteristic of a duplication chain, directly
related to the adaptation process is the signature,
which captures the structural configuration in terms
of exact chunks, non-matching gaps and the metrics
around them. In terms of the archeology metaphor,
the signature could be associated with a ”map” stor-
ing the places where all the related items where dis-
covered. The signature of the previous example is
"E2.D1.E3.M1.E3”, which describes two code frag-
ments having 3 exact (E) chunks of sizes 2, 3 and 3,
separated by 2 non-matching gaps: one with 1 deleted
(D) line and the other with 1 modified (M) line of code.

2.4 Proportional Harmony

In the context of size, we want to capture only those
code fragments pairs that contain a significant amount
of duplication. While an exact clone is significant if
the clone’s size is larger than a threshold, a significant
duplication chain must also be proportionally harmo-
nious. First, we will define some metrics related to
these proportions (measured in LOC).

Size of Exact Chunk (SEC) reflects the degree of the
granulation left behind by the adaptation phase of the
copy-paste-adaptation process. Line Bias (LB) is the
size of non-matching gaps and its value may allow us
to decide if two exact chunks belong to the same du-
plicated block, since it provides a measure of distance
between them. Size of Duplication Chain (SDC) is the
size of the more meaningful block of duplication, which
actually suggests its magnitude.

In order to constrain the duplication chain’s pro-
portions, we will set a minimum SDC to filter the less
relevant clones. Furthermore, we will impose a mini-
mum SEC and a maximum LB. In the harmony con-
text, there is a relation between SEC and LB: the SEC
should always be larger than LB, because it is not de-
sirable to detect duplication chains with gaps larger
than its exact chunks.

2.5 Stepwise Recovery Methodology

We propose an approach of lightweight line-
matching, enhanced with the concept of chain dupli-
cation, which can also cover duplications that cannot
be detected by a simple line-matching approach.

Phase 1: Code Preprocessing. After reading the
source-files, we eliminate the white spaces, so that the
various indentation styles would not make the differ-
ence. An optional feature is the possibility to ignore
the comments in the analysis process. This phase pro-
vides a set of relevant (clean) lines of code.

Phase 2: Populate the scatter-plot. As in the
original scatter-plot approach, we compare every line
of code with every line of code in the project. As a
result of this comparison, the matrix will be divided in
two symmetric areas, around the main diagonal, which
is always completely marked (self comparison). We
then populate only one half of the matrix, in order to
avoid storing redundant information. The matching
intersections are marked.

Phase 3: Build the duplication chains. Starting
with the left-upper matrix cell, we look for the first
marked one, as a starting point for a possible dupli-
cation chain. From here, we accumulate the marked
cells following the diagonal direction towards the lower-
right cell. The algorithm will accept as an extension of
the chain either a marked cell that continues an exact
chunk or a marked cell situated in its vicinity, whose
range is controlled by the maximum LB. Significant
duplication chains will be stored in a results list.

3 Validating the Approach

In order to present the advantages over traditional
code duplication detectors, we have to prove that this
approach provides additional relevant duplications,
usually missed by other line-based detection methods.
To demonstrate this, we applied the proposed approach
over a set of case studies. DuDe, our supporting tool
owes its flexibility to the tunable thresholds which can
filter the results based on size and proportional har-
mony. The tool provides a list of suspects which can
be further analyzed, by means of the duplicated code
visualization feature and statistical information.

3.1 Quantitative Gain

We took 8 Java and C projects, covering the size
range from 0.5 MB to 10 MB, containing between
11,000 and 235,000 LOC in a number of 65 to 741 files.
We compared traditional approach results (NODCI,
COV1) with the one based on duplication chains
(NODC2, COV2). Correlating the results in terms of
coverage' and number of duplication chains presented

LCoverage is the ratio of the number of copied lines of code
to the total number of lines in the system

in Figure 3, we can state that our enhanced ”arche-
ological” approach provides an important amount of
otherwise lost code duplication information.

[Project Name Lang. [NOF |Size (MB) [KLOC|NODC 1|NODC 2|COV1 (%)|COV2(%
weltab C 5 0.43 11 759 71 7. 7
cook C 590! 2.68 80 1285 1744 1
snns C 420! 4.82| 115| 47930| 53274 1 2
postgresql C 612 .52| 235 704 1070 8 1
netbeans-javadoc Java 101 0.68 14, 39! 48! 12 1
eclipse-ant Java 178 1.43 35 14, 24/ 2 4
eclipse-jdtcore Java 741 6.9] 148 716 1127 12, 16,
j2sdj1.4.0-javax-swing [Java 538 8.39] 204 1171 1388 7 10;

Figure 3. Experimental results

3.2 Quality-Focused Analysis

In order to validate the quality of our results, we
extracted the clones found in another project (JHot-
Draw) only by the duplication chain approach and an-
alyzed them manually. Out of 72 clones, there were 30
duplication chains. Summarized, we found over 76%
relevant clones, potential subjects to refactorings.

In order to calculate the recall® of our tool, we con-
sidered only the type 1 (exact) clones from the refer-
ence set built in [3] belonging to the biggest project
(eclipse-jdtcore) and intersected it with the duplica-
tion chains set found by DuDe. Concluding, our tool’s
recall was 89% under the strict conditions of the [3] ex-
periment, but in a more loose context the recall could
rise up to 95%.

3.3 Validation of Scalability

The largest project over which we successfully ap-
plied our approach, was a C project with 32 MB of
source code and over 600,000 LOC. The analysis took
2h45m, which is an acceptable amount of time for such
an industrial-size project.

4 Related Work

The idea of analyzing the non-matching parts of the
duplication appeared in [10], where the authors used
it to observe evolution between several versions of a
system. An interesting contribution, similar to our
approach was [11], whose authors address the gapped
clones issue by combining the exact clones provided
by their token-based clone detector [7]. Various other
techniques for detecting clones have been proposed over
the years: based on scatter-plots [1], [4] and [5], on
metrics [9] or abstract syntax trees [2] and program
dependency graphs [8].

2Recall is the percentage of discovered clones over existing
clones

5 Conclusions
5.1 Pros and Cons

One of the major advantages of our approach is
that it provides additional duplications to the ones de-
tectable by other traditional methods. It is able to
bring to light smaller duplication fragments, otherwise
hardly noticeable, which belong to a bigger, thus more
important duplication block. By doing these, it ensures
that the refactoring decisions are made with improved
comprehension of the big picture, i.e., it provides sup-
port for proper refactoring. Furthermore, the flexibil-
ity provided by means of the thresholds can lead to
customized detection methodologies, that fit particu-
lar maintenance focuses.

As for the drawbacks, the tool is not capable of de-
tecting renamed variables, due to its rather high gran-
ularity of comparison, although some of those could be
found under modified duplication chains (with lower
precison).

5.2 Future Work

To address the problem of course granularity, we
think that a fuzzy comparison would make an im-
provement, giving the tool the advantages of a clas-
sical token-based duplication detector along with its
novel duplication chain recovery approach. We would
also be interested in researching on the information we
could extract from the signatures of code duplication
chains. Finally, while we think that it would be pos-
sible to associate some patterns in the signatures of
duplication chains, it would be a real challenge to pro-
vide some assistance in the refactoring process, based
on some identified patterns.

6 Acknowledgments

This work is supported by the Austrian Min-
istry BMBWK under Project No. GZ 45.527/1-
VI/B/7a/02. We would also like to thank the LOOSE
Research Group (LRG) for being such a great and chal-
lenging team.

References

[1] Brenda S. Baker. A Program for Identifying Du-
plicated Code. Computing Science and Statistics,
24:49-57, 1992.

[2] Ira Baxter, Andrew Yahin, Leonardo Moura,
Marcelo Sant’” Anna, and Lorraine Bier. Clone

[10]

[11]

Detection Using Abstract Syntax Trees. In Pro-
ceedings ICSM 1998, 1998.

Stefan Bellon. Vergleich von Techniken zur Erken-
nung duplizierten Quellcodes. Master’s thesis,
Universitdt Stuttgart, September 2002.

Kenneth Ward Church and Jonathan Isaac Helf-
man. Dotplot: A program for exploring self-
similarity in millions of lines for text and code. J.
Computational and Graphical Statistics, 2(2):153—
174, June 1993.

Stéphane Ducasse, Matthias Rieger, and Serge
Demeyer. A language independent approach for
detecting duplicated code. In Hongji Yang and
Lee White, editors, Proceedings ICSM 99 (In-
ternational Conference on Software Maintenance),
pages 109-118. IEEE, September 1999.

Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts. Refactoring: Improv-
ing the Design of Existing Code. Addison Wesley,
1999.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro
Inoue. CCFinder: A multi-linguistic token-based
code clone detection system for large scale source
code. IEFEE Transactions on Software Engineer-
ing, 28(6):654-670, 2002.

Jens Krinke. Identifying similar code with
program dependence graphs. In Proceedings
Eigth Working Conference on Reverse Engineer-
ing (WCRE’01), pages 301-309. IEEE Computer
Society, October 2001.

Jean Mayrand, Claude Leblanc, and Ettore M.
Merlo. Experiment on the automatic detection of
function clones in a software system using metrics.
In International Conference on Software System
Using Metrics, pages 244-253, 1996.

F.Van Rysselberghe and S. Demeyer. Reconstruc-
tion of successful software evolution using clone
detection. In International Workshop on Princi-
ples of Software Evolution (IWPSE), pages 126—
130, 2003.

Yasushi Ueda, Toshihiro Kamiya, Shinji
Kusumoto, and Katsuro Inoue. On detec-
tion of gapped code clones using gap locations.
In Proceedings Ninth Asia-Pacific Software Engi-
neering Conference (APSEC’02), pages 327-336,
Gold Coast, Australia, December 2002. IEEE.

