
Scripting 3D Visualizations with CODECITY

Richard Wettel
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract

Software visualization is a useful means to present and
explore large amounts of information. However, construct-
ing useful visualizations targeted at specific tasks is often
a trial-and-error process. As a consequence, a visualiza-
tion prototyping tools needs to be flexible to allow for the
creation of new visualizations and also to provide an envi-
ronment that grants access to its powerful mechanisms.

In this paper, we report on our experience with comple-
menting the rich graphical user interface of CODECITY,
a 3D visualization tool, with a scripting environment. The
scripting language gives the programmers full access to the
configurability of our system, without the need for them to
be exposed to the real complexity of the application. Thanks
to the scripting engine, adapting CODECITY to new types
of data has become easy, as we illustrate with examples.

1 Introduction

Software visualization provides useful assistance in tasks
related to program comprehension and reverse engineering,
because humans are good at spotting patterns. Software
visualization in 3D allows for data exploration in environ-
ments closer to the ones we live in. In spite of the many use-
ful visualizations available, researchers are always looking
for new ones, either as improvements in terms of expres-
siveness, intuitiveness, or efficiency, over the existing ones,
or just to visualize new types of data. To support this kind of
exploration, a visualization tool needs to be flexible enough
to accommodate unforeseen directions and to provide full
access to its visualization creation mechanism.

Originally inspired by CodeCrawler’s polymetric views
[6], we developed CODECITY, a 3D software visualization
tool based on a city metaphor. It provides assistance in ex-
ploring software systems, both for single version [13] and
for multiple-version [15] analysis. From the very begin-
ning, we strived for configurability, to allow its extension in
order to support a wide range of tasks. To allow access to
the configuration mechanism, we provided a graphical user
interface (GUI). However, the consistent effort required to

adapt the user interface after every extension of the system,
made clear the need for a less constrained mechanism to
be used when experimenting with visualizations. We ex-
tended our tool with scripting capabilities, which allows us
to freely experiment and only adapt the GUI when the new
visualizations are worth the effort.

2 Related Work

To our best knowledge, there is no 3D software visual-
ization tool that provides scripting facilities. However, there
are several approaches similar to ours with respect to the
city metaphor we use. Knight et al.’s Software World [4]
and Charter et al.’s Component City [2] use a city metaphor,
however at a finer granularity which does not scale. Marcus
et al. with sv3d [7] and Balzer et al. with Software Land-
scapes [1] use similar 3D metaphors to visualize software
systems. Another city metaphor is proposed by Panas et
al.’s in [10]. In Verso, Langelier et al. [5] use 3D visual-
izations to display structural information, by representing
classes as boxes with metrics mapped on height, color and
twist, and packages as borders around the classes placed us-
ing a tree layout or a sunburst layout.

In the context of customizability and scriptable visual-
izations, several 2D approaches have been proposed. Based
on Müller et al.’s Rigi [9], a sequel of scriptability-related
works have followed. In a first phase, Tilley et al. used the
Tcl language to script not only the visual representation,
but also of other aspects which allow users to tailor a wide
range of reverse-engineering tasks, such as parsing, infor-
mation extraction and organization [12]. In a second phase,
Tilley et al. proposed the customization of the user interface
through scripting based on the Tk language [11]. A more re-
cent work is Favre’s GSEE (Generic Software Exploratory
Environment) [3], a visualization tool which allows script-
ing the visualization using its own scripting language to ac-
commodate the different data sources and forms. The work
that inspired us in introducing scripting in our tool is Mon-
drian by Meyer et al. [8]. All the presented tools focus
mainly on the scripting, while ours provides more special-
ized visualization and uses the scripting as a means to ex-
plore beyond its existing visualization capabilities.

1



Figure 1. Code city of MooseDevelopment

3 Software Systems as Cities

We chose a city metaphor [14] for our visualizations be-
cause a city is an intuitive exploratory environment with a
clear notion of locality.

Just like a city, a software system is a complex man-made
product which cannot be oversimplified and must be incre-
mentally explored.

In our code cities, the classes are represented as buildings
and the packages as districts. Some of the visual properties
of the city artifacts carry information about the software el-
ement they represent.

Figure 1 illustrates such a city in which the buildings
color is blue, their height represents the number of methods
metric of the class, and the base size the number of attribute
metric. The color of the districts depicts the nesting level
of the package they represent, according to a color scheme,
e.g., ranging from dark gray for root packages to light gray
deeply nested packages.

We support the creation of such fine-tuned visualizations
through the view configuration mechanism, presented next.

4 View Configurations

A view configuration is a specification defining for each
model element type (e.g., class, package, method, inheri-
tance):

1. the visibility, a boolean denoting whether it will be de-
picted or not,

2. the associated glyph type (what 3D construct is used
for representation)

3. the layout to use when placing its components, and

4. the visual mappers associated with each property of
the chosen glyph.

The user accesses the configuration mechanism by
means of a view configuration user interface (See Figure 2),
which provides widgets for the modification of every view
configuration parameter. The preview panel reflects the cur-
rent view configuration applied on a dummy model, and al-
lows to quickly understand the effect of each configuration
parameter on the view.

2



Figure 2. View configuration user interface

The configuration management capabilities allow saving
a potentially useful configuration under a given name and
description, and provide access to the saved configurations,
for direct use or as base for building new configurations. In
the early versions of CODECITY, the view configurations
saved by the user were serialized to files, which were not
stored by Smalltalk’s versioning system. Moreover, a re-
naming of a class which was part of the configuration (e.g.,
any of the mappers, glyphs, layouts) would break the saved
configurations.

To address these issues, we made a first step towards
scripting, by exporting the configurations as scripts, i.e.,
source code which evaluated produces valid configuration
objects. These scripts are saved as class-side methods in
a class serving as view configuration repository, and thus
are easily tracked with Store. Because every object which
is part of the view configuration mechanism knows how to
generate its own building script, a view configuration script
is just a composition of basic object building scripts.

Besides the view configuration mechanism, there is an-
other important part in constructing a visualization: the
builder. The role of the builder is to assemble a visualiza-
tion based on the data to visualize (i.e., a Moose model of a
system) and on a view configuration which describes what
to see and how to see it. The builder in our case incor-
porates knowledge about how the model is organized (e.g.,
packages can contain packages and classes, classes contain
methods and attributes), which allows them to build and lay-
out the elements in the right order. This kind of information
can also be obtained by reading the annotations of the meta-
model, if such annotations are available.

5 Scripting visualizations

Scripting provides a mechanism for prototyping new vi-
sualizations and experiment their feasibility before fully
embedding them in the tool’s user interface. The script-
ing language we devised allows shortcutting the builder’s
part of the builder, manually specifying the view configura-
tion, and visualizing any kind of data. The only downside is

that scripting ad-hoc visualizations in CODECITY requires
knowledge about both the meta-model and the basic con-
structs of the scripting language.

Similar to Mondrian’s Easel [8], our scripting interface
(See Figure 3) is made of three parts: a variable list (bot-
tom left), a code editor for the script (bottom right), and
the visualization generated by running the script (top). The
example script shows the classes with more than 15 meth-
ods in MooseDevelopment as terrain glyphs and their meth-
ods built on top of them using a layout called progressive
bricks. The methods are colored in dark red and the ones of
the meta-classes are semi-transparent. The buildings rep-
resenting classes are connected by blue edges representing
inheritance relationships.

6 Conclusions

We presented an experience report on extending an exist-
ing 3D visualization tool with scripting facilities. Although
not able to fully replace all the tool’s parts, the scripting is
an efficient alternative to the view configuration and builder
mechanisms and allows experimenting with new visualiza-
tions before integrating them.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Hasler Foundation for the project
“EvoSpaces - Multi-dimensional navigation spaces for soft-
ware evolution” (Hasler Foundation MMI Project No.
1976). We want to thank Tudor Gı̂rba for his support in
the implementation of the scripting part.

References

[1] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz. Soft-
ware landscapes: Visualizing the structure of large soft-
ware systems. In VisSym 2004, Symposium on Visualization,
pages 261–266. Eurographics Association, 2004.

[2] S. M. Charters, C. Knight, N. Thomas, and M. Munro. Visu-
alisation for informed decision making; from code to com-
ponents. In International Conference on Software Engineer-
ing and Knowledge Engineering (SEKE ’02), pages 765–
772. ACM Press, 2002.

[3] J.-M. Favre. Gsee: A generic software exploration environ-
ment. In In Proceedings of the 9th International Workshop
on Program Comprehension (IWPC 2001), pages 233–244.
IEEE Computer Society, 2001.

[4] C. Knight and M. C. Munro. Virtual but visible software.
In International Conference on Information Visualisation,
pages 198–205, 2000.

[5] G. Langelier, H. A. Sahraoui, and P. Poulin. Visualization-
based analysis of quality for large-scale software systems.
In Proceedings of 20th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2005), pages
214–223. ACM, 2005.

3



Figure 3. CODECITY’s scripting interface

[6] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering. Transactions on
Software Engineering (TSE), 29(9):782–795, Sept. 2003.

[7] A. Marcus, L. Feng, and J. I. Maletic. 3d representations for
software visualization. In Proceedings of the ACM Sympo-
sium on Software Visualization, pages 27–36. IEEE, 2003.

[8] M. Meyer, T. Gı̂rba, and M. Lungu. Mondrian: An agile
visualization framework. In ACM Symposium on Software
Visualization (SoftVis 2006), pages 135–144. ACM Press,
2006.

[9] H. Muller and K. Klashinsky. Rigi: a system for
programming-in-the-large. Proceedings of the 10th Inter-
national Conference on Software Engineering (ICSE ’97),
pages 80–86, 1988.

[10] T. Panas, R. Berrigan, and J. Grundy. A 3d metaphor for
software production visualization. International Conference
on Information Visualization, page 314, 2003.

[11] S. Tilley. Domain-retargetable reverse engineering. ii. per-
sonalized user interfaces. In Proceedings of 10th IEEE Inter-

national Conference on Software Maintenance (ICSM’94),
pages 336–342. IEEE Computer Society Press, 1994.

[12] S. Tilley, H. Muller, M. Whitney, and K. Wong. Domain-
retargetable reverse engineering. In Proceedings of 9th
IEEE International Conference on Software Maintenance
(ICSM’93), pages 142–151. IEEE Computer Society Press,
1993.

[13] R. Wettel and M. Lanza. Program comprehension through
software habitability. In Proceedings of ICPC 2007 (15th In-
ternational Conference on Program Comprehension), pages
231–240, 2007.

[14] R. Wettel and M. Lanza. Visualizing software systems as
cities. In Proceedings of VISSOFT 2007 (4th IEEE Interna-
tional Workshop on Visualizing Software For Understanding
and Analysis), pages 92–99, 2007.

[15] R. Wettel and M. Lanza. Visual exploration of large-scale
system evolution. In Proceedings of WCRE 2008 (15th
Working Conference on Reverse Engineering), pages xxx–
xxx. IEEE CS Press, 2008.

4


	Introduction
	Related Work
	Software Systems as Cities
	View Configurations
	Scripting visualizations
	Conclusions

