
Language-Independent
Detection of Clones

with Renamed Variables

by

Richard Wettel

Disertation Thesis

Faculty of Automatics and Computer Science of the
”Politehnica” University of Timişoara

Timişoara,
June 2005

Advisor:
Dr. Ing. Radu Marinescu

By eliminating the duplicates, you ensure that the code
says everything once and only once, which is the essence
of good design (Once And Only Once Rule).

Kent Beck

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Prerequisites . 1
1.1.2 Context . 1
1.1.3 Opponent Forces . 2
1.1.4 Solutions . 3

1.2 Outline . 3

2 Fundaments 5
2.1 Principles . 5

2.1.1 Clone Related Bad Smells 5
2.1.2 Eliminate Clones by Refactoring 6
2.1.3 Design Patterns . 8

2.2 Tool Foundation . 17
2.2.1 Introducing DuDe . 17
2.2.2 Need for Duplication Chains 18
2.2.3 Anatomy of a Duplication Chain 19
2.2.4 Proportional Harmony . 22
2.2.5 Detection of Duplication Chains 23

3 Approach 25
3.1 Clone Detection Improvements 25

3.1.1 The Idea . 25
3.1.2 The Levenshtein Distance 26
3.1.3 Levenshtein-Based Similarity 28
3.1.4 Token-Level Similarity . 29
3.1.5 Matching Strategies . 30

3.2 System architecture . 30
3.3 Data Exchange . 34

3.3.1 XML Parsing . 34
3.3.2 Data Format . 35

iii

iv CONTENTS

4 Evaluation of the tool 41
4.1 Features . 41

4.1.1 Tunable Parameters . 44
4.2 Experiment . 44

4.2.1 Experimental Setup . 45
4.2.2 Interpretation of the Experiment’s Results 45
4.2.3 Experimental Conclusions 48

5 State of the Art 49
5.1 Early Concerns . 49
5.2 Actual Concerns . 50

5.2.1 International Workshops 50
5.3 Fierce Competition on Clone Detection 51
5.4 Gapped Clones . 52
5.5 Levenshtein Distance Used in Clone Detection 52
5.6 Clones With Variables Renaming 52

6 Conclusion 53
6.1 Evaluation of Contribution . 53
6.2 Pros and Cons . 54

6.2.1 Pros . 54
6.2.2 Cons . 54

6.3 Future Work . 54

Bibliography 57

Chapter 1

Introduction

1.1 Motivation

1.1.1 Prerequisites

We start with a line-based language-independent code duplication detector
named DuDe, introduced in [Wet04], able to detect exact clones or duplication
chains made of exact clones separated by non-matching gaps. The duplication
chain concept provides a mechanism to detect larger duplicated code fragments,
with adaptations at the level of line of code (deletion, insertion or modification
of lines of code).

The tool uses textual comparison, while for the granularity of the comparison,
the line of code (LOC) was chosen because usually the Copy & Paste activities
imply a number of lines of code, rather than a single one. It is appropriate for
analyzing software systems written in any language, since the matching is done
by textual comparison.

1.1.2 Context

The context in which code duplication appears and the fact that it is a sign
of bad software design have already been discussed in [Wet04]. That is why
we will focus on the concerns providing the motivation of this thesis and the
improvements it proposes.

The main concern of this thesis is the detection of so-called parameterized
clones. The author of [Bak93] states that: ”...while some of the duplication
in a software system may involve sections of code that are identical, much of
the duplication involves sections of code that are not identical, but the same
except for a systematic change of parameters such as identifiers and constants,
e.g. each occurrence of first, last, 0, and fun in one section may be replaced by
init, final, 1, and g, respectively, in the other section; this kind of correspondence

1

2 CHAPTER 1. INTRODUCTION

between sections of code is called a parameterized match”. The same author,
who is one of the early researchers concerned about clone detection, mentions
the fact that: ”commonly, code will have more parameterized matches than
exact matches”.

Parameterized clones have been also addressed by other approaches ([BYM+98],
[KKI02], under various names, i.e., near-miss clones and code portions with re-
named variables, respectively. The author of [Bel02] defines them as type 2
clones, along with type 1 clones (exact clones) and type 3 clones (modified be-
yond variable or constant names).

That is why we consider this special type of clones very important to software
maintenance. Furthermore, these are excellent candidates for the refactorings
[FBB+99] needed to eliminate the duplicated code. Since the supporting tool
[Wet04] could not detect such clones, the author made out of this disadvantage
the main motivation for this thesis. We address the detection of such clones, by
proposing improvement measures for our supporting tool.

1.1.3 Opponent Forces

Despite the fact that type 2 clones are sometimes obvious by simply visually
checking the code, they proved to be much harder to detect automatically.

In order to detect renamed variables, a clone detector would need to be able to:

• analyze the data at a fine granularity level

• have access to semantical information on the analyzed data

An existent approach that zooms up to the level of tokens [KKI02], supported
by a tool called CCFinder, involves lexical analysis, which further implies im-
plementations of lexical analyzers for every programming language supported
by the tool.

The first problem is that DuDe compares lines of code, thus it would not be
able to detect modifications of lexical elements smaller than a line of code (the
granularity is too coarse). Moreover, having language-specific knowledge means
to lose the language-independence.

What we will try to achieve in this thesis is a set of improvements that will
enhance our tool to address the detection of clones with renamed variables
without losing the language independence.

1.2. OUTLINE 3

1.1.4 Solutions

The main idea behind this was to replace the actual comparison method (the
tool checks if two strings are identical) with the computation of a similarity
metric, value that could indicate whether two lines of code are very similar to
each other. Such an approach would be able to detect code fragments that differ
in only variable names. The similarity should be computed with no need for
lexical or syntactical information, so that the language independence is further
maintained.

Since the two desiderates are antagonistic forces (precise results are based on
variable identification, which needs language-dependent information, but the
other desiderate is language independence), we will rather propose a solution
which is a compromise that combines relevant results and language indepen-
dence (or a minimum of language dependence).

1.2 Outline

Chapter 2 describes the part of nowadays software engineering fundaments re-
lated to the detection, avoidance and elimination of code clones. Then, there is
a short section on the signs of bad design called ”bad smells” [FBB+99], also
related to code duplication and a practical guide to a set of refactorings that
can eliminate the duplicated code. Furthermore, there is a section dedicated to
design patterns, in particular the one used in the project. In the second part
of the first chapter, we describe the tool foundation, which introduces the tool
itself, then presents the concept of duplication chain and some structural infor-
mation around it and ends with the description of the phases the tool executes
in the process of clone detection.

After setting up the environment, the problem and the concepts on which the
whole approach is based, chapter 3 presents the proposed approach on detecting
the clones with renamed variables. It cuts through directly to the idea behind
the enhancement to detect clones with renamed variables. Then it introduces
the Levenshtein distance, since the approach is mainly based on it. And the idea
is concretized in the approximate matching strategies based on two types of sim-
ilarity. Next, a short description of the new system’s architecture is presented,
along with UML class diagrams, for a deeper understanding of the approach.
In the end, the newly introduced data exchange features are presented, starting
with the XML parsing technology, the data format, described by means of an
XML schema and some brief information about XML validation.

Chapter 4 puts us in the chair of a critic, and starts to analyze what we realized
with this work. We briefly introduce the features of the tool (graphical user
interface, configuring the detection process through parameters). Next, DuDe

4 CHAPTER 1. INTRODUCTION

is subject of an experiment that should prove the applicability of the new pro-
posed approximate matching strategies (conducted on 4 C and Java projects).
Then, a deeper examination of the experiment’s results drives us to conclusions.

Chapter 5 discusses the state of the art in the field of code duplication de-
tection, related to object-oriented design. There has been international concern
towards clone detection and tools support, materialized in 2 conferences (2002
and 2003). The first conference has been in some way a benchmark to some
of the tools in this field of research. The position of the tool in the context of
actual tools is also discussed. After discussing the pros and cons of the existent
tools, we present some ideas close to the ideas in our approach and the differ-
ences between our approach and theirs.

Chapter 6 draws a line, taking us to the conclusions. There is a section on
good and bad regarding the new approach. A brief evaluation of the personal
contribution of this work and a final report on possible future work on this tool.

Chapter 2

Fundaments

2.1 Principles

This section’s goal is to introduce some of the idioms and principles that are
closely related to code duplication.

2.1.1 Clone Related Bad Smells

Kent Beck and Martin Fowler define some signs of problems that can be ad-
dressed by refactoring the code, which they call ”bad smells in code”. The first
mentioned symptom is code duplication, described by them as ”number one in
the stink parade”. If you see the same code structure in more than one place,
you can be sure that your program will be better if you find a way to unify
them.

Code duplication

The simplest duplicated code problem is when you have the same expression in
two methods of the same class. Then all you have to do is Extract Method and
invoke the code from both places.

Another common duplication problem is when you have the same expression
in two sibling subclasses. You can eliminate this duplication by using Extract
Method in both classes then Pull Up Field. If the code is similar but not the
same, you need to use Extract Method to separate the similar bits from the
different bits. You may then find you can use Form Template Method. If the
methods do the same thing with a different algorithm, you can choose the clearer
of the two algorithms and use Substitute Algorithm.

If you have duplicated code in two unrelated classes, consider using Extract
Class in one class and then use the new component in the other. Another pos-
sibility is that the method really belongs only in one of the classes and should

5

6 CHAPTER 2. FUNDAMENTS

be invoked by the other class or that the method belongs in a third class that
should be referred to by both of the original classes. You have to decide where
the method makes sense and ensure it is there and nowhere else.

Switch Statements

One of the most obvious symptoms of object-oriented code is its comparative
lack of switch (or case) statements. The problem with switch statements is
essentially that of duplication. Often you find the same switch statement
scattered about a program in different places. If you add a new clause to the
switch, you have to find all these switch, statements and change them. The
object-oriented notion of polymorphism gives you an elegant way to deal with
this problem.

Most times you see a switch statement you should consider polymorphism. The
issue is where the polymorphism should occur. Often the switch statement
switches on a type code. You want the method or class that hosts the type
code value. So use Extract Method to extract the switch statement and then
Move Method to get it onto the class where the polymorphism is needed. At
that point you have to decide whether to Replace Type Code with Subclasses
or Replace Type Code with State/Strategy. When you have set up the inheri-
tance structure, you can use Replace Conditional with Polymorphism. If you
only have a few cases that affect a single method, and you don’t expect them
to change, then polymorphism is overkill. In this case Replace Parameter with
Explicit Methods is a good option. If one of your conditional cases is a null, try
Introduce Null Object.

Parallel Inheritance Hierarchies

Parallel inheritance hierarchies is really a special case of shotgun surgery. In
this case, every time you make a subclass of one class, you also have to make
a subclass of another. You can recognize this smell because the prefixes of the
class names in one hierarchy are the same as the prefixes in another hierarchy.

The general strategy for eliminating the duplication is to make sure that in-
stances of one hierarchy refer to instances of the other. If you use Move Method
and Move Field, the hierarchy on the referring class disappears.

2.1.2 Eliminate Clones by Refactoring

This section will introduce definitions of refactoring, from different points of view
and continues with the description practical refactorings for the elimination of
code duplication.

2.1. PRINCIPLES 7

Definition 2.1 (Refactoring) The process of changing a software system in
such a way that it does not alter the external behavior of the code yet improves
its internal structure is called refactoring.

It is a disciplined way to clean up code that minimizes the chances of introducing
bugs. In essence when you refactor you are improving the design of the code
after it has been written[FBB+99].

Definition 2.2 (Refactoring) A change made to the internal structure of
software to make it easier to understand and cheaper to modify without changing
its observable behavior is called refactoring.

Refactorings Explained

This section will make clear some of the refactorings proposed in the three cases
that have to do with code duplication.

1. Parameterize Method
Several methods do similar things but with different values contained in
the method body. Create one method that uses a parameter for the dif-
ferent values.
Motivation: You may see a couple of methods that do similar things but
vary depending on a few values. In this case you can simplify matters
by replacing the separate methods with a single method that handles the
variations by parameters. Such a change removes duplicate code and in-
creases flexibility, because you can deal with other variations by adding
parameters.

2. Pull Up Field
Two subclasses have the same field. Move the field to the superclass.
Motivation: If subclasses are developed independently, or combined through
refactoring, you often find that they duplicate features. In particular, cer-
tain fields can be duplicates. Such fields sometimes have similar names
but not always. The only way to determine what is going on is to look
at the fields and see how they are used by other methods. If they are
being used in a similar way, you can generalize them. Doing this reduces
duplication in two ways. It removes the duplicate data declaration and
allows you to move from the subclasses to the superclass behavior that
uses the field.

3. Pull Up Method
You have methods with identical results on subclasses. Move them to the
superclass.
Motivation: Eliminating duplicate behavior is important. Although two
duplicate methods work fine as they are, they are nothing more than a
breeding ground for bugs in the future. Whenever there is duplication,
you face the risk that an alteration to one will not be made to the other.
Usually it is difficult to find the duplicates. The easiest case of using

8 CHAPTER 2. FUNDAMENTS

Pull Up Method occurs when the methods have the same body, implying
there’s been a copy and paste. Of course it’s not always as obvious as
that. You could just do the refactoring and see if the tests croak, but
that puts a lot of reliance on your tests. I usually find it valuable to look
for the differences; often they show up behavior that I forgot to test for.
Often Pull Up Method comes after other steps. You see two methods in
different classes that can be parameterized in such a way that they end
up as essentially the same method. In that case the smallest step is to
parameterize each method separately and then generalize them. Do it in
one go if you feel confident enough.

4. Extract Superclass
You have two classes with similar features. Create a superclass and move
the common features to the superclass.
Motivation: Duplicate code is one of the principal bad things in systems.
If you say things in multiple places, then when it comes time to change
what you say, you have more things to change than you should. One form
of duplicate code is two classes that do similar things in the same way or
similar things in different ways. Objects provide a built-in mechanism to
simplify this situation with inheritance. However, you often don’t notice
the commonalities until you have created some classes, in which case you
need to create the inheritance structure later. An alternative is Extract
Class. The choice is essentially between inheritance and delegation. In-
heritance is the simpler choice if the two classes share interface as well
as behavior. If you make the wrong choice, you can always use Replace
Inheritance with Delegation later.

5. Form Template Method
You have two methods in subclasses that perform similar steps in the
same order, yet the steps are different. Get the steps into methods with
the same signature, so that the original methods become the same. Then
you can pull them up.
Motivation: Inheritance is a powerful tool for eliminating duplicate be-
havior. Whenever we see two similar methods in a subclass, we want to
bring them together in a superclass. But what if they are not exactly the
same? What do we do then? We still need to eliminate all the duplication
we can but keep the essential differences. A common case is two methods
that seem to carry out broadly similar steps in the same sequence, but the
steps are not the same. In this case we can move the sequence to the su-
perclass and allow polymorphism to play its role in ensuring the different
steps do their things differently. This kind of method is called a template
method [Gang of Four].

2.1.3 Design Patterns

Designing object-oriented software is hard, and designing reusable object-oriented
software is even harder. Your design should be specific to the problem at hand

2.1. PRINCIPLES 9

but also general enough to address future problems and requirements. Expe-
rienced object-oriented designers will tell you that a reusable and flexible de-
sign is difficult if not impossible to get ”right” the first time. Yet experienced
object-oriented designers do make good designs. What is the magic behind the
solutions of experienced designers, that makes such a difference?

Expert designers do not necessary know to solve every problem from first prin-
ciples. Rather, they reuse solutions that have worked for them in the past.
When they find a good solution, they use it again and again. Such experience is
part of what makes them experts. Consequently, you’ll find recurring patterns
of classes and communicating objects in many object-oriented systems. These
patterns solve specific design problems and make object-oriented designs more
flexible, elegant, and ultimately reusable. They help designers reuse successful
designs by basing new designs on prior experience. A designer who is familiar
with such patterns can apply them immediately to design problems without
having to rediscover them.

Most of the programmers when reading the requirements have at least once
had the feelings they already solved that problem, or a similar one. If they
could remember the essence of the solution, they would only have to adapt it
to the specifics of the problem and not reinvent it all over.

Definition 2.3 (Pattern) ”Each pattern describes a problem which occurs
over and over again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice” [Ale79]. (C. Alexander,
The Timeless Way of Building, 1979)

The book ”Design Patterns: Elements of Reusable Object-Oriented Software”
[GHJV95] by the Gang of Four (GOF) does exactly that: makes that experience
knowledge persistent, by associating a software architecture problem that often
comes up, the solution to that problem and the consequences of applying that
solution with a name:

• the problem explains when to apply the pattern, namely the problem and
the context it is associated with

• the solution describes the elements that make up the design, their relation-
ships, responsibilities, and collaborations. The solution does not describe
a particular concrete design or implementation, because a pattern is like
a template that can be applied in many different situations. Instead, the
pattern provides an abstract description of a design problem and how a
general arrangement of elements (classes and objects in our case) solves
it.

• The consequences are the results and trade-offs of applying the pattern.
They are critical for evaluating design alternatives and for understand-

10 CHAPTER 2. FUNDAMENTS

ing the costs and benefits of applying the pattern. The consequences for
software often concern space and time trade-offs. They may address lan-
guage and implementation issues as well. Since reuse is often a factor in
object-oriented design, the consequences of a pattern include its impact
on a system’s flexibility, extensibility, or portability. Listing these conse-
quences explicitly helps you understand and evaluate them. The conse-
quences help us putting in balance the advantages and disadvantages of
one solution or another and choosing the one the serves or purposes the
best.

• the name of the pattern is the element that enriches our design vocabu-
lary and lets us express in a word or two a design problem, its solutions,
and consequences. Naming a pattern lets us design at a higher level of
abstraction.

While different mechanisms offered by the object-oriented programming lan-
guages (i.e., inheritance) provide means for the reuse of software, design pat-
terns are the key for the reuse of design.

In this chapter we will discuss some of the patterns used in the architecture
of DuDe and other patterns that have to do, in a way or the other, with code
duplication.

Observer

The Observer pattern defines a one-to-many dependency between objects so
that when one object changes state, all its dependents are notified and updated
automatically.

The structure is presented in Fig. 2.1. There may be many observers and the

 Applicability

Use the Observer pattern in any of the following situations:

● When an abstraction has two aspects, one dependent on the other. Encapsulating these aspects in separate
objects lets you vary and reuse them independently.

● When a change to one object requires changing others, and you don't know how many objects need to be
changed.

● When an object should be able to notify other objects without making assumptions about who these objects
are. In other words, you don't want these objects tightly coupled.

 Structure

 Participants

● Subject

❍ knows its observers. Any number of Observer objects may observe a subject.

❍ provides an interface for attaching and detaching Observer objects.

● Observer

❍ defines an updating interface for objects that should be notified of changes in a subject.

● ConcreteSubject

❍ stores state of interest to ConcreteObserver objects.

❍ sends a notification to its observers when its state changes.

● ConcreteObserver

❍ maintains a reference to a ConcreteSubject object.

❍ stores state that should stay consistent with the subject's.

❍ implements the Observer updating interface to keep its state consistent with the subject's.

Figure 2.1: Observer

2.1. PRINCIPLES 11

only thing they have to share is extending the Observer abstract class. Each ob-
server may react differently to the same notification from the ConcreteSubject.
The data-source (Subject) should be as decoupled as possible from the observer
to allow observers to change independently of the subject. The Subject is com-
pletely decoupled, for it knows only that it has a list of subscribers (Observer
objects) that it has to notice when something in its state changes. This is why
the Observer pattern is also known as Publish-Subscribe. An example of inter-
action between a subject and two observers is presented in Fig. 2.2.

The consequences of applying the Observer pattern are:

 Collaborations

● ConcreteSubject notifies its observers whenever a change occurs that could make its observers' state
inconsistent with its own.

● After being informed of a change in the concrete subject, a ConcreteObserver object may query the subject
for information. ConcreteObserver uses this information to reconcile its state with that of the subject.

The following interaction diagram illustrates the collaborations between a subject and two observers:

Note how the Observer object that initiates the change request postpones its update until it gets a notification
from the subject. Notify is not always called by the subject. It can be called by an observer or by another
kind of object entirely. The Implementation section discusses some common variations.

 Consequences

The Observer pattern lets you vary subjects and observers independently. You can reuse subjects without reusing
their observers, and vice versa. It lets you add observers without modifying the subject or other observers.

Further benefits and liabilities of the Observer pattern include the following:

1. Abstract coupling between Subject and Observer. All a subject knows is that it has a list of observers, each
conforming to the simple interface of the abstract Observer class. The subject doesn't know the concrete
class of any observer. Thus the coupling between subjects and observers is abstract and minimal.

Because Subject and Observer aren't tightly coupled, they can belong to different layers of abstraction in a
system. A lower-level subject can communicate and inform a higher-level observer, thereby keeping the
system's layering intact. If Subject and Observer are lumped together, then the resulting object must either
span two layers (and violate the layering), or it must be forced to live in one layer or the other (which might
compromise the layering abstraction).

2. Support for broadcast communication. Unlike an ordinary request, the notification that a subject sends
needn't specify its receiver. The notification is broadcast automatically to all interested objects that
subscribed to it. The subject doesn't care how many interested objects exist; its only responsibility is to
notify its observers. This gives you the freedom to add and remove observers at any time. It's up to the
observer to handle or ignore a notification.

Figure 2.2: Sequence diagram for Observer

1. The Observer pattern lets you vary subjects and observers independently.
You can reuse subjects without reusing their observers, and vice versa. It
lets you add observers without modifying the subject or other observers.

2. Abstract coupling between Subject and Observer. All a subject knows
is that it has a list of observers, each conforming to the simple interface
of the abstract Observer class. The subject doesn’t know the concrete
class of any observer. Thus the coupling between subjects and observers
is abstract and minimal.

3. Support for broadcast communication. Unlike an ordinary request, the
notification that a subject sends needn’t specify its receiver. The notifi-
cation is broadcast automatically to all interested objects that subscribed
to it. The subject doesn’t care how many interested objects exist; its only
responsibility is to notify its observers. This gives you the freedom to add
and remove observers at any time. It’s up to the observer to handle or
ignore a notification.

12 CHAPTER 2. FUNDAMENTS

4. Unexpected updates. Because observers have no knowledge of each other’s
presence, they can be blind to the ultimate cost of changing the subject.
A minor operation on the subject may cause a cascade of updates to
observers and their dependent objects. Moreover, dependency criteria
that aren’t well-defined or maintained usually lead to false updates, which
can be hard to track down.

Chain of Responsibility

Avoid coupling the sender of a request to its receiver by giving more than one
object a chance to handle the request. Chain the receiving objects and pass the
request along the chain until an object handles it.

The structure (Fig.2.3) of this pattern helps avoiding the coupling of the sender
of a request to its receiver by giving more than one object a chance to handle
the request. Chain the receiving objects and pass the request along the chain
until an object handles it.

An example of building the chain is described in Fig. 2.4. After building

● more than one object may handle a request, and the handler isn't known a priori. The handler
should be ascertained automatically.

● you want to issue a request to one of several objects without specifying the receiver explicitly.

● the set of objects that can handle a request should be specified dynamically.

 Structure

A typical object structure might look like this:

 Participants

● Handler (HelpHandler)

❍ defines an interface for handling requests.

❍ (optional) implements the successor link.

● ConcreteHandler (PrintButton, PrintDialog)

❍ handles requests it is responsible for.

❍ can access its successor.

❍ if the ConcreteHandler can handle the request, it does so; otherwise it forwards the request
to its successor.

● Client

Figure 2.3: Class diagram for Chain Of Responsibility

the chain, a client calls the handle() method of the first element of the chain. If
this cannot handle the request, it transmits the request over to the next element
in the chain.

A typical example of applying this pattern is context-sensitive help facility
for a graphical user interface. The user can obtain help information on any
part of the interface just by clicking on it. The help that’s provided depends on
the part of the interface that’s selected and its context; for example, a button
widget in a dialog box might have different help information than a similar but-

2.1. PRINCIPLES 13

● more than one object may handle a request, and the handler isn't known a priori. The handler
should be ascertained automatically.

● you want to issue a request to one of several objects without specifying the receiver explicitly.

● the set of objects that can handle a request should be specified dynamically.

 Structure

A typical object structure might look like this:

 Participants

● Handler (HelpHandler)

❍ defines an interface for handling requests.

❍ (optional) implements the successor link.

● ConcreteHandler (PrintButton, PrintDialog)

❍ handles requests it is responsible for.

❍ can access its successor.

❍ if the ConcreteHandler can handle the request, it does so; otherwise it forwards the request
to its successor.

● Client

Figure 2.4: Building the chain

ton in the main window. If no specific help information exists for that part of
the interface, then the help system should display a more general help message
about the immediate context the dialog box as a whole, for example. This
interaction is captured in the sequence diagram presented in Fig. 2.5.

Let's assume the user clicks for help on a button widget marked "Print." The button is contained in an
instance of PrintDialog, which knows the application object it belongs to (see preceding object diagram).
The following interaction diagram illustrates how the help request gets forwarded along the chain:

In this case, neither aPrintButton nor aPrintDialog handles the request; it stops at anApplication, which
can handle it or ignore it. The client that issued the request has no direct reference to the object that
ultimately fulfills it.

To forward the request along the chain, and to ensure receivers remain implicit, each object on the chain
shares a common interface for handling requests and for accessing its successor on the chain. For
example, the help system might define a HelpHandler class with a corresponding HandleHelp operation.
HelpHandler can be the parent class for candidate object classes, or it can be defined as a mixin class.
Then classes that want to handle help requests can make HelpHandler a parent:

The Button, Dialog, and Application classes use HelpHandler operations to handle help requests.
HelpHandler's HandleHelp operation forwards the request to the successor by default. Subclasses can
override this operation to provide help under the right circumstances; otherwise they can use the default
implementation to forward the request.

 Applicability

Use Chain of Responsibility when

Figure 2.5: Interaction within the chain

The problem here is that the object that ultimately provides the help isn’t
known explicitly to the object (e.g., the button) that initiates the help request.
What we need is a way to decouple the button that initiates the help request
from the objects that might provide help information. The Chain of Responsi-
bility pattern defines how that happens.

The consequences of applying this pattern are:

• Reduced coupling. The pattern frees an object from knowing which other
object handles a request. An object only has to know that a request will
be handled ”appropriately.” Both the receiver and the sender have no
explicit knowledge of each other, and an object in the chain doesn’t have
to know about the chain’s structure.

14 CHAPTER 2. FUNDAMENTS

• Added flexibility in assigning responsibilities to objects. Chain of Respon-
sibility gives you added flexibility in distributing responsibilities among
objects. You can add or change responsibilities for handling a request by
adding to or otherwise changing the chain at run-time. You can combine
this with subclassing to specialize handlers statically.

• Receipt isn’t guaranteed. Since a request has no explicit receiver, there’s
no guarantee it’ll be handledthe request can fall off the end of the chain
without ever being handled. A request can also go unhandled when the
chain is not configured properly.

Template Method

Define the skeleton of an algorithm in an operation, deferring some steps to sub-
classes. Template Method lets subclasses redefine certain steps of an algorithm
without changing the algorithm’s structure.

This pattern is directly related to code duplication. The use of this pattern
can avoid duplicating code. The Template Method pattern should be used to
implement the invariant parts of an algorithm once and leave it up to subclasses
to implement the behavior that can vary.

1. When common behavior among subclasses should be factored and local-
ized in a common class to avoid code duplication. You first identify
the differences in the existing code and then separate the differences into
new operations. Finally, you replace the differing code with a template
method that calls one of these new operations.

2. To control subclasses extensions.

Consider an application framework that provides Application and Document
classes. The Application class is responsible for opening existing documents
stored in an external format, such as a file. A Document object represents
the information in a document once it’s read from the file.Applications built
with the framework can subclass Application and Document to suit specific
needs. For example, a drawing application defines DrawApplication and Draw-
Document subclasses; a spreadsheet application defines SpreadsheetApplication
and SpreadsheetDocument subclasses. The relations between the classes are de-
scribed in the Fig. 2.6 class diagram.

The abstract Application class defines the algorithm for opening and reading a
document in its OpenDocument operation:

void Application::OpenDocument (const char* name)
{

if (!CanOpenDocument(name))

2.1. PRINCIPLES 15

 Intent

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template
Method lets subclasses redefine certain steps of an algorithm without changing the algorithm's structure.

 Motivation

Consider an application framework that provides Application and Document classes. The Application
class is responsible for opening existing documents stored in an external format, such as a file. A
Document object represents the information in a document once it's read from the file.

Applications built with the framework can subclass Application and Document to suit specific needs.
For example, a drawing application defines DrawApplication and DrawDocument subclasses; a
spreadsheet application defines SpreadsheetApplication and SpreadsheetDocument subclasses.

The abstract Application class defines the algorithm for opening and reading a document in its
OpenDocument operation:

 void Application::OpenDocument (const char* name) {
 if (!CanOpenDocument(name)) {
 // cannot handle this document
 return;
 }

 Document* doc = DoCreateDocument();

 if (doc) {
 _docs->AddDocument(doc);
 AboutToOpenDocument(doc);

Figure 2.6: Example of applying TemplateMethod

{
// cannot handle this document
return;

}
Document* doc = DoCreateDocument();
if (doc)
{

_docs->AddDocument(doc);
AboutToOpenDocument(doc);
doc->Open();
doc->DoRead();

}
}

OpenDocument defines each step for opening a document. It checks if the doc-
ument can be opened, creates the application-specific Document object, adds it
to its set of documents, and reads the Document from a file.

OpenDocument is a template method. A template method defines an algorithm
in terms of abstract operations that subclasses override to provide concrete be-
havior. Application subclasses define the steps of the algorithm that check if
the document can be opened (CanOpenDocument) and that create the Docu-
ment (DoCreateDocument). Document classes define the step that reads the
document (DoRead). The template method also defines an operation that lets
Application subclasses know when the document is about to be opened (About-
ToOpenDocument), in case they care.

Template methods are a fundamental technique for code reuse. They are par-
ticularly important in class libraries, because they are the means for factoring
out common behavior in library classes. It’s important for template methods to

16 CHAPTER 2. FUNDAMENTS

specify which operations are hooks (may be overridden) and which are abstract
operations (must be overridden). To reuse an abstract class effectively, subclass
writers must understand which operations are designed for overriding.

Decorator

Sometimes we want to add responsibilities to individual objects, not to an en-
tire class. A graphical user interface toolkit, for example, should let you add
properties like borders or behaviors like scrolling to any user interface compo-
nent.One way to add responsibilities is with inheritance. Inheriting a border
from another class puts a border around every subclass instance. This is in-
flexible, however, because the choice of border is made statically. A client can’t
control how and when to decorate the component with a border.A more flexible
approach is to enclose the component in another object that adds the border.
The enclosing object is called a decorator. The decorator conforms to the
interface of the component it decorates so that its presence is transparent to
the component’s clients. The decorator forwards requests to the component
and may perform additional actions (such as drawing a border) before or after
forwarding. Transparency lets you nest decorators recursively, thereby allowing
an unlimited number of added responsibilities.

For example, if we had a TextView object that displays text in a window.
TextView has no scroll bars by default, because we might not always need them.
When we do, we can use a ScrollDecorator to add them. Suppose we also want
to add a thick black border around the TextView. We can use a BorderDecora-
tor to add this as well. We simply compose the decorators with the TextView to
produce the desired result. The following object diagram shows how to compose
a TextView object with BorderDecorator and ScrollDecorator objects to produce
a bordered, scrollable text view (Fig. 2.7).

The ScrollDecorator and BorderDecorator classes are subclasses of Decorator,
The following object diagram shows how to compose a TextView object with BorderDecorator and
ScrollDecorator objects to produce a bordered, scrollable text view:

The ScrollDecorator and BorderDecorator classes are subclasses of Decorator, an abstract class for visual
components that decorate other visual components.

VisualComponent is the abstract class for visual objects. It defines their drawing and event handling interface. Note
how the Decorator class simply forwards draw requests to its component, and how Decorator subclasses can extend
this operation.

Decorator subclasses are free to add operations for specific functionality. For example, ScrollDecorator's ScrollTo
operation lets other objects scroll the interface if they know there happens to be a ScrollDecorator object in the
interface. The important aspect of this pattern is that it lets decorators appear anywhere a VisualComponent can.
That way clients generally can't tell the difference between a decorated component and an undecorated one, and so
they don't depend at all on the decoration.

 Applicability

Use Decorator

● to add responsibilities to individual objects dynamically and transparently, that is, without affecting other
objects.

● for responsibilities that can be withdrawn.

● when extension by subclassing is impractical. Sometimes a large number of independent extensions are
possible and would produce an explosion of subclasses to support every combination. Or a class definition
may be hidden or otherwise unavailable for subclassing.

Figure 2.7: Example of composing

an abstract class for visual components that decorate other visual components
(Fig. 2.8.

2.2. TOOL FOUNDATION 17

VisualComponent is the abstract class for visual objects. It defines their draw-

The following object diagram shows how to compose a TextView object with BorderDecorator and
ScrollDecorator objects to produce a bordered, scrollable text view:

The ScrollDecorator and BorderDecorator classes are subclasses of Decorator, an abstract class for visual
components that decorate other visual components.

VisualComponent is the abstract class for visual objects. It defines their drawing and event handling interface. Note
how the Decorator class simply forwards draw requests to its component, and how Decorator subclasses can extend
this operation.

Decorator subclasses are free to add operations for specific functionality. For example, ScrollDecorator's ScrollTo
operation lets other objects scroll the interface if they know there happens to be a ScrollDecorator object in the
interface. The important aspect of this pattern is that it lets decorators appear anywhere a VisualComponent can.
That way clients generally can't tell the difference between a decorated component and an undecorated one, and so
they don't depend at all on the decoration.

 Applicability

Use Decorator

● to add responsibilities to individual objects dynamically and transparently, that is, without affecting other
objects.

● for responsibilities that can be withdrawn.

● when extension by subclassing is impractical. Sometimes a large number of independent extensions are
possible and would produce an explosion of subclasses to support every combination. Or a class definition
may be hidden or otherwise unavailable for subclassing.

Figure 2.8: Example of applying Decorator

ing and event handling interface. The Decorator class simply forwards draw re-
quests to its component and the Decorator subclasses can extend this operation.

Decorator subclasses are free to add operations for specific functionality. For
example, ScrollDecorator’s ScrollTo operation lets other objects scroll the inter-
face if they know there happens to be a ScrollDecorator object in the interface.

The important aspect of this pattern is that it lets decorators appear anywhere
a VisualComponent can. That way clients generally can’t tell the difference
between a decorated component and an undecorated one, and so they don’t
depend at all on the decoration.

The structure of this pattern is described in the next class diagram (Fig. 2.9).

2.2 Tool Foundation

2.2.1 Introducing DuDe

The current paper is built on the foundation provided by [Wet04]. In order to
be able to introduce the improvements proposed in this thesis, it is necessary
to present the tool we started with. The tool is a Java program, called DuDe,
aimed at automatic detection of code duplication. It uses string comparison
to detect code clones, which is a language independent approach. Due to its

18 CHAPTER 2. FUNDAMENTS
 Structure

 Participants

● Component (VisualComponent)

❍ defines the interface for objects that can have responsibilities added to them dynamically.

● ConcreteComponent (TextView)

❍ defines an object to which additional responsibilities can be attached.

● Decorator

❍ maintains a reference to a Component object and defines an interface that conforms to Component's
interface.

● ConcreteDecorator (BorderDecorator, ScrollDecorator)

❍ adds responsibilities to the component.

 Collaborations

● Decorator forwards requests to its Component object. It may optionally perform additional operations
before and after forwarding the request.

 Consequences

The Decorator pattern has at least two key benefits and two liabilities:

1. More flexibility than static inheritance. The Decorator pattern provides a more flexible way to add
responsibilities to objects than can be had with static (multiple) inheritance. With decorators,
responsibilities can be added and removed at run-time simply by attaching and detaching them. In contrast,
inheritance requires creating a new class for each additional responsibility (e.g.,
BorderedScrollableTextView, BorderedTextView). This gives rise to many classes and increases the
complexity of a system. Furthermore, providing different Decorator classes for a specific Component class
lets you mix and match responsibilities.

Figure 2.9: Structure of Decorator

high scalability (it has successfully analyzed projects up to 600 KLOC), it is
appropriate to the analysis of industrial-size software systems.

Since the copying of a code fragment is often accompanied by modifications
of the code needed to adapt it to the current problem (modification, insertions
or deletions of statements), DuDe was built around the concept of code dupli-
cation chains, which will be presented next.

Target Audience

The target of DuDe’s detection were exact clones (type 1 clones in [Bel02],
which are identical fragments of code belonging to either two different files or
to the same file in different places, and also duplication chains, meaning clones
that have been affected by changes at the level of line of code (type 3 clones in
[Bel02], which can be deletion, insertion or modifications of lines of codes.

2.2.2 Need for Duplication Chains

Imagine we have the two pieces of code (Fig. 2.10) with mainly the same task:
to read some sensors and then to send those values to a display device (one to
an LCD and the other to the console, for debugging reasons). This is a trivial
example of scattered duplication belonging to a single duplicated block. The
first piece of code has an extra line to initialize the LCD.

Because of the modified lines of code they could be detected as 3 exact clones,
which is rather false. They belong to the same duplicated block, that can be
easily refactored. One could rightly argue that there are approaches which can
detect renamed variables. What happens if the lines of code are modified fur-
ther than just variables or if there are lines appearing in only one of the two

2.2. TOOL FOUNDATION 19

code fragments? Even such a tool would find at least two smaller clones, that
could be considered too small for refactoring.

initSensors(tSensors);
readSensors(tSensors);
lcd.init();
int i = 0;
while(i < tSensors.length){
 temp[i] =tSensors[i].getTemp();
 lcd.println("T"+i+"="+temp[i]);
 i++;
}
regulateTemp(temp);

initSensors(tSensors);
readSensors(tSensors);
int i = 0;
while(i < tSensor.length){
 temp[i] =tSensor[i].getTemp();
 System.out.println("T"+i+"="+temp[i]);
 i++;
}
regulateTemp(temp);

Figure 2.10: Scattered duplication

Thus, detected clones might not be relevant if they are too small or analyzed in
isolation. Our main goal in[Wet04] was to capture, along with the usual clones,
blocks of scattered clones that may have common origin, which will be further
referred to as duplication chains.

2.2.3 Anatomy of a Duplication Chain

Duplication chain. A duplication chain can be a complex element (the rep-
resentation of the duplicated code block), composed of a number of smaller,
exact clones, separated pairwise by non-matching gaps.

Exact chunks. An exact chunk is a group of consecutive line-pairs that are
detected as duplicated (is an exact copy). In the context of duplication chains,
exact chunks are the non-altered parts of a duplicated block, that preserved its
identity. An exact chunk appears in a scatter plot as a continuous diagonal, as
it can be seen on the previous example’s scatter plot representation (Fig. 2.11).

Non-matching gaps. A non-matching gap (Fig. 2.12) is a pair of code frag-
ments made of completely different lines of code, located between two consec-
utive exact chunks of the same duplication chain. The two code fragments
corresponding to a non-matching gap can have different sizes.

• same sizes - means there has been a modification of their constituting lines
of code

• one of the fragments is missing - there has been a deletion/insertion of
lines of code

20 CHAPTER 2. FUNDAMENTS

exact chunk (2)

exact
chunk (3)

exact
chunk (3)

Figure 2.11: Exact chunks

This way, non-matching gaps of a duplication chain reflect the changes that have
been made to the originating duplicated block. In a scatter plot representation,
non-matching gaps appear as shortest non-marked paths linking two consecutive
diagonals (exact clones). The position and distance between two consecutive
exact chunks belonging to a duplication chain reflects the adaptation process of
the duplicated block in that area, in terms of lines of code (insertion, deletion,
modification). Thus, while apparently less important in clone detection, the
non-matching parts around exact chunk provide some extra information about
the adaptation process.

non-matching
gap (1, deleted)

non-matching
gap (1, modified)

Figure 2.12: Non-matching gaps

Duplication chain type The type of a duplication chain is a summary of
operations performed on the code of one code fragment in order to transform it

2.2. TOOL FOUNDATION 21

into the second code fragment. We identified four duplication chain types (Fig.
2.13):

• exact: is a exact chunk with no other exact chunks in its close vicinity
(impossible to extend). This type is similar to a usual identical clone from
other approaches, where no operations have been performed on the copied
code

• delete/insert: composed of exact chunks linked by non-matching gaps left
behind by insertions or deletions (only one of the gap’s two fragments of
code exists)

• modified: exact chunks linked by non-matching gaps in a configuration
that reflects line modifications (the gap’s two fragments have the same
number of LOC)

• composed: the gaps between the exact chunks have more than one type
of configurations, which suggests the duplicated block has been subject to
a set of surgery operations (insertions, deletions, modifications)

Duplication chain size In the context of size, we want to capture those code
fragments pairs that contain a significant amount of duplication. An exact clone
is significant if the clone’s size (in LOC) is larger than a threshold. A duplication
chain is significant if the chain’s size is large enough and if the components are
in a certain relation.

Duplication chain signature. The signature is a textual fingerprint of the
duplication chain’s harmony, capturing its structural configuration in terms of
exact chunks, non-matching gaps and the metrics around them.

In terms of the archeology metaphor, the signature could be associated with
a ”map” storing the places where all the related items where discovered. We
believe that it might be possible to find a relation between signatures and types
of problems associated to code duplication.

The signature is made of pairs letter-value, separated by dots. The signifi-
cance of a letter is: E means exact chunk, and the value that follows it is the
SEC, while I, D or M stands for the type of non-matching gap (Insert, Delete
or Modified) and the value that follows it is the LB. A pair of letter-value that
describes a non-matching gap is always located between 2 pair-letter values de-
scribing exact chunks. The signature shows that a duplication chain can be
composed of one single exact chunk, or it can be composed of more duplication
chunks. It always starts and ends with a duplication chunk (E).

The signature of the duplication chain is closely related to its type(Fig.
2.13). Although not the focus of this paper, we believe that the signature of
a duplication chain can provide some additional information on the types of
adaptations performed on its code.

22 CHAPTER 2. FUNDAMENTS

EXACT
E6

MODIFIED
E2.M2.E2.M1.E3

INSERT
E2.I1.E2.I2.E2

DELETE
E2.D2.E3.D1.E2

COMPOSED
E2.M1.E2.D1.E2.I1.E2

Figure 2.13: Types and signatures

2.2.4 Proportional Harmony

Since a duplication chain is made of both copied and non-matching lines of code
and because terms like ”close enough” and ”significant amount” are vague and
free to interpretation, we must set some rules that such a structure have to obey
in order to be qualified for the title of duplication chain.

First, we will define some metrics related to a chain’s properties:

1. Size of Exact Chunk (SEC) is measured in terms of LOC and is a key
metric, because it reflects the degree of the granulation left behind by the
adaptation phase of the copy-paste-adaptation process. Furthermore, this
is closely related to how painful the refactoring to eliminate this duplica-
tion could be.

2. Line Bias (LB) is the size (in LOC) of the non-matching gap between
two consecutive exact chunks. The LB value may allow us to decide if
two exact chunks belong to the same duplicated block, since it provides
a measure of distance between them. The lower the distance (LB), the
higher the probability that the two exact chunk are part of the same
duplication block and possibly the higher the refactoring potential.

3. Size of Duplication Chain (SDC) is the size (in LOC) of the more mean-
ingful block of duplication, which actually suggests the magnitude of that
duplication. In the particular case of an exact type duplication chain,
SDC is the same as SEC.

A harmonious duplication chain will have:

• the SDC larger than a goal-specific threshold (minSDC). This condition
makes sure that the total length of the duplication chain is large enough
to qualify it as significant

• every LB (one for every two consecutive exact chunks) smaller than a
threshold (maxLB). This will quantify the ”neighborhood” aspect as it
makes sure that the consecutive pieces of the chain are not too far from
each other to be considered related

2.2. TOOL FOUNDATION 23

• every SEC larger than a threshold (minSEC). This measure will avoid
detecting duplication chains containing ”duplication crumbs”, i.e., very
small duplicated code fragments

In the harmony context, there is a relation between SEC and LB: the SEC
should always be larger that LB, because it is not desirable to detect duplica-
tion chains with gaps larger than its exact chunks.

There are no such things as perfect threshold values. Still, from our experience
we found that following threshold values are adequate: minSDC = 8, maxLB =
2 and minSEC = 3. The minSDC of 8 is justified because we considered that
significant duplication chains should be larger than the minimum configuration
duplication chain of 2 exact chunks with SEC = 3, separated by a minimum
length non-matching gap with a LB = 1 between them.

2.2.5 Detection of Duplication Chains

In [Wet04] we proposed an approach of lightweight line-matching, enhanced
with the concept of chain duplication.

Phase 1: Code Preprocessing

The first phase starts with reading the source-files line by line, eliminating
the white spaces, so that the various indentation styles would not make the
difference. Then we eliminate noise (i.e., lines of code made of syntactic elements
like a single closing brace, or an else keyword or empty lines). An optional
feature, and at the same time the only language-dependent part of our approach
is ignoring the comments in the analysis process. This phase provides a set of
relevant (noise free) lines of code in a raw form (without white spaces).

Phase 2: Populate the scatter-plot

As in the original scatter-plot approach, we compare every line of code (specif-
ically, relevant code) with every line of code in the project (including itself).
As a result of this comparison, the matrix will be divided in two symmetric
areas, around the main diagonal, which is always completely marked (result of
self comparison). With these facts in mind, we started to work only with one
half of the matrix (excluding the diagonal), in order to avoid storing redundant
information (it is enough to compare line X with line Y, we do not have to
compare Y with X).

After comparing the lines of code with each other, we store the result in the
matrix: the intersection of X (horizontal) and Y (vertical) will store the result
of comparing line X of the matrix with line Y of the matrix (marked for match
or unmarked otherwise).

24 CHAPTER 2. FUNDAMENTS

Phase 3: Build the duplication chains

Starting with the left-upper matrix cell, we look for a marked one, in order to
find a starting point for a possible duplication chain. If successfully, we start
going on diagonal direction towards the lower-right cell. The algorithm will
accept as a continuation of the chain either a marked cell that continues an
exact chunk or a marked cell situated in the immediate vicinity, in order to
merge the last exact chunk with the one starting with this specific cell. The
algorithm will start with a 0 length line bias and increase its ”sight” until it
finds the next marked cell or until it reaches the maximum line bias, which puts
an end to the chain. Also the sizes of the exact chunks in a chain must be
greater than the minimum threshold set up before detection.

After closing a chain, we continue with the next cell after the one that started
the previous chain.

When a duplication chain has reached the minimum accepted length, it will
be stored in a duplication chain list which will be passed as a result of the
detection process. A scatter plot representation, augmented with the compared
lines is illustrated in a more complex example, an adapted duplication that
summarizes all the types of operations on the lines of code (Fig. 2.14).

E2
M1

E3

I2

E2
D1

E2

to
be
or

not
to
be

that
is

of course
the

question

to be an
d

no
t

to be th
at

is th
e

qu
es

tio
n

yo
u

kn
ow

type: COMPOSED
structure: E2.M1.E3.I2.E2.D1.E2

Figure 2.14: Complex duplication chain

Chapter 3

Approach

3.1 Clone Detection Improvements

3.1.1 The Idea

There are two levels of granularity where some type of code comparison appears:

1. a coarse granularity level, reached when comparing sequences of lines of
code in order to build chains of code duplication

2. a finer granularity level, which comes up when comparing sequences of
characters (lines of code) in order to mark the scatter-plot elements

The concept of chain of code duplication provides flexibility at the coarse granu-
larity level, offering the means to detect type 3 clones (with modifications larger
than renamed variables). At the finer granularity level, there was no flexibility
in the previous approach [Wet04]. The lack of flexibility is caused by the rather
large granularity of the comparison unit (line of code) in the context of type 2
clone detection (clones with renamed variables).

The straightforward means to enable the clone detector to find clones with
renamed variables (constants) would be to establish a finer level of granularity
(token) for the comparison. With this matching and by means of lexical infor-
mation about the analyzed system it would be easy to determine variables and
constants and to give them generic names. The high precision of this approach
is obtained with the price of losing language independence (it needs at least
lexical analyzers for every language supported).

Our approach to detect type 2 clones without giving up the language inde-
pendence is to replace the exact matching technique used so far in order to
determine the cloned code with an approximate matching. Intuitively, while
the result of an exact-matching based comparison is the boolean representation
of the answer to the question: ”Are the two lines of code identical?”, the re-
sult of an approximate-matching based comparison could be the answer to the

25

26 CHAPTER 3. APPROACH

question: ”How much are the two lines of code alike?” (similarity percentage).
Using a minimum threshold of similarity, we would mark not only lines of code
pairs that are identical, but also lines of code pairs that are ”similar enough”.
Putting this in the scatter-plot metaphor context, this would mean establishing
a grey-scale and marking the scatter-plot elements with the grey tones corre-
sponding to the similarity degree of the intersecting lines of code. The threshold
would be a filter eliminating the elements marked with a grey tone lighter than
the minimum threshold tone.

This idea led us to the search of an appropriate metric that measures the sim-
ilarity between two strings. The Hamming distance is used to determine the
similarity between two strings of the same length, which does not seem appro-
priate for lines of code, which can cover various lengths. Another important
metric is the Levenshtein distance, which is further discussed.

3.1.2 The Levenshtein Distance

The Levenshtein distance between two strings is given by the minimum number
of operations needed to transform one string into the other, where an operation
is an insertion, deletion, or substitution. It is named after the Russian scientist
Vladimir Levenshtein, who considered this distance in [Lev66]. It is useful in
applications that need to determine how similar two strings are, such as spell
checkers (it is also called edit distance).

A commonly-used bottom-up dynamic programming algorithm for computing
the Levenshtein distance involves the use of an (n + 1) (m + 1) matrix, where
n and m are the lengths of the two strings. Here is pseudocode for a function
LevenshteinDistance that takes two strings, str1 of length lenStr1, and str2 of
length lenStr2, and computes the Levenshtein distance between them:

int LevenshteinDistance(char str1[1..NOChr1], char str2[1..NOChr2])
// d is a table with NOChr1+1 rows and NOChr2+1 columns
int d[0..NOChr1, 0..NOChr2]
// i and j are used to iterate over str1 and str2
int i, j, cost

for i from 0 to NOChr1
d[i, 0] := i

for j from 0 to NOChr2
d[0, j] := j

for i from 1 to NOChr1
for j from 1 to NOChr2

3.1. CLONE DETECTION IMPROVEMENTS 27

if str1[i] = str2[j] then cost := 0
else cost := 1

d[i, j] := minimum(
d[i-1, j] + 1, // insertion
d[i , j-1] + 1, // deletion
d[i-1, j-1] + cost // substitution

)

return d[NOChr1, NOChr2]

The complexity of the algorithm is O(m×n), where n and m are the length of
str1 and str2. The Levenshtein distance is the value of the element positioned
at the intersection of the last row with the last column and this implies that
in order to calculate de Levenshtein distance, one would have to calculate the
whole matrix, which can be a serious time consuming process.

An example of the matrix built for the calculation of the Levenshtein distance
is Fig. 3.1. The two compared strings are source and voice and the resulting
distance of 3 is the value of the element in the right, down corner.

Figure 3.1: Example of Levenshtein distance matrix

28 CHAPTER 3. APPROACH

3.1.3 Levenshtein-Based Similarity

Since the Leveshtein distance tells us only how many operations would be needed
to transform one string to another, the lengths of the strings have no influence
on the result. Besides from being counterintuitive in the similarity context (the
distance between identical strings is 0), the similarity between two strings (not
necessarily of the same length) should also consider their lengths. Therefore we
define the Levinshtein distance based similarity as follows:

SimL[%] =
(

1− LD

max(NOChr1, NOChr2)

)
· 100 (3.1)

where LD is the Levenshtein distance, while NOChr1 and NOChr2 are the
lenghts (in number of characters) of the two strings being compared.

Despite the fact that the Levenshtein distance is a measure of the degree of
similarity between two strings, in the particular case of comparing two lines
of code (viewed as simple strings) there are some reasons that make it less
appropriate:

1. Using the Levenshtein distance for every pair of lines of code in the system
instead of the exact matching could prove a very expensive computational
effort. Such a serious time overhead could lead to scalability problems

2. An even more important drawback of this approach would be the relevance
of computing the Levenshtein distance, which is defined as the minimal
number of characters one have to replace, insert or delete to transform one
string into the other. This issue will be further illustrated by an example
and a counterexample.

Example: let’s consider the two lines of code:

for(int i=0; i<100; i++) tab[i]=0; (a)
for(int x=0; x<100; x++) tab[x]=0; (b)

We calculate the similarity degree based on the formula (3.1):

SimL[%] =
(

1− 4
34

)
· 100 = 88.23 (3.2)

Counterexample: instead of the (b) line of code from the previous example,
let’s compare (a) with (c), which we will represent - out of page layout reasons
- on more than one row (although in reality it is on a single row):

for(int aLargerVariableReplacingI = 0;
aLargerVariableReplacingI < 100;
aLargerVariableReplacingI++)

tab[aLargerVariableReplacingI]=0; (c)

3.1. CLONE DETECTION IMPROVEMENTS 29

Based on the formula (3.1), the similarity degree between these 2 lines of code
is:

SimL[%] =
(

1− 96
130

)
· 100 = 26.15 (3.3)

From a lexical point of view, the two examples presented are practically identi-
cal (a variable has been renamed). However, the measured degrees of similarity
are radically different. The counterexample demonstrates that in certain cases,
this similarity measurement method can provide unprecise results. For exam-
ple, if we would have set the minimum threshold to be 80%, (a) and (b) would
have been detected, but not (a) and (c), or (b) and (c), due to the fact that the
variable in (c) has a very high length.

3.1.4 Token-Level Similarity

The main problem regarding the Levenshtein distance based similarity is the
too fine granularity considered when comparing strings. To make it more ap-
propriate to our declared goal, we needed to raise this granularity: instead of a
sequence of characters, we chose to consider the string as a sequence of tokens.
Usually, the symbols of programming languages are separated from each other
by white spaces, hence we could be able to separate them without any lexical
knowledge. However, many of the programming languages (i.e., C, Java) allow
one to put together such lexical elements (for example, the i++ statement).

In order to extract the sequence of tokens from a line of code, while keeping the
language independence to a minimal level, we defined a filter based on regular
expressions, which is aware of lexical elements common to many programming
languages that can stay glued to other elements (separators, operators). In the
preprocessing phase of the analyzed code, by means of this filter, the lexical ele-
ments in every line of code will be separated by white space from its predecessor
and successor lexical elements. For example, the following line of code:

for(int i=0;i<100;i++) tab[i]=0;

after preprocessing will look like this:

for (int i = 0 ; i < 100 ; i ++) tab [i] = 0 ;

Every line of code put in such a form will be quite easy to transform into a
sequence of tokens (lexical elements), without having any knowledge weather a
token is a variable, a numerical value or an operator.

This adapted version of the Levenshtein distance is given by the number of
operations with tokens needed to transform a sequence of tokens (line of code)
into the other sequence of tokens. The possible operations with tokens are mod-
ification of tokens (possible renaming of variables or constants), deletions and
insertions of tokens. Raising the granularity could focus on the transformations

30 CHAPTER 3. APPROACH

that really happen when copying, pasting and modifying code, since the pro-
grammer operates with lexical elements rather than with simple characters.

The formula in this case is similar:

SimLT
[%] =

(
1− TLD

max(NOTok1, NOTok2)

)
· 100 (3.4)

where TLD is the Token-level Levinshtein-based Distance, while NOTok1 and
NOTok2 are the lengths (in number of tokens) of the two compared strings.

Applying this formula on the previously presented example and counterexam-
ple, one can observe that the resulting similarity degrees are equal, since both
i and aLargerVariableReplacingI represent one lexical element (a variable,
in this particular case), no matter how many characters they are composed of:

SimLT
[%] =

(
1− 4

21

)
· 100 = 80.95 (3.5)

3.1.5 Matching Strategies

The two distinct matching types based on the similarity degree measurement
together with the exact matching from the early versions of DuDe were imple-
mented as matching strategies. DuDe will allow the user to select one of this
strategies based on the purpose of the analysis, the size of the analyzed projects
(the matching strategies scale differently).

3.2 System architecture

The architecture of the enhanced clone detecting engine is described in the
UML class diagram (Fig. 3.2). In the middle of the diagram stands the Proces-
sor class, that is the main character behind the duplication chains detection
process. A Processor object works with Entity objects as input, in order to
be dependent on an abstract entity (in conformance to Dependency Inversion
Principle). The classes that specialize Entity are SourceFileEntity, which is the
input for the stand-alone version of DuDe and MethodEntity, which is the input
provided by the Insider reengineering platform, in DuDe’s integrated version. A
DirectoryReader object reads recursively all the files in a directory and creates
the corresponding SourceFileEntity objects, passing them to the Processor.

The improvements necessary to add support for type 2 clones is mainly in

3.2. SYSTEM ARCHITECTURE 31

M
et

ho
dE

nt
ity

S
ou

rc
eF

ile
E

nt
ity

D
ire

ct
or

yR
ea

de
r

ge
tF

ile
sR

ec
ur

si
ve

()

1
*

C
le

an
in

gD
ec

or
at

or

cl
ea

n(
)

sp
ec

ifi
cC

le
an

()1

1

1

ne
xt 1

C
om

m
en

ts
C

le
an

er

N
oi

se
R

eg
ex

C
le

an
er

M
at

rix
Li

ne

C
od

eF
ra

gm
en

t
be

gi
nL

in
e

: i
nt

en
dL

in
e

: i
nt

D
up

lic
at

io
nT

yp
e

D
up

lic
at

io
n

si
gn

at
ur

e
: S

tri
ng

re
al

Le
ng

th
 :

in
t

co
pi

ed
Le

ng
th

 :
in

t

2

1

2

1
re

fe
re

nc
eC

od
e,

du

pl
ic

at
eC

od
e

11 11
ty

pe

C
od

eS
pa

ce
r

E
xa

ct
M

at
ch

in
g

S
tra

te
gy

Le
ve

ns
ht

ei
nM

at
ch

in
g

S
tra

te
gy

To
ke

nL
ev

el
M

at
ch

in
g

S
tra

te
gy

C
om

pa
re

S
tra

te
gy

Fa
ct

or
y

bu
ild

S
tra

te
gy

()

E
nt

ity

ge
tN

am
e(

)
ge

tC
od

e(
)

1
1

1
1en

tit
y

1

1

1

1

en
tit

y

M
at

rix
Li

ne
Li

st *1 *1

lis
t

V
irt

ua
lM

at
rix

ge
t()

se
t()

fre
eL

in
es

()
ite

ra
to

r(
)

D
up

lic
at

io
nL

is
t

*1 *1
lis

t

M
at

ch
in

gS
tra

te
gy

th
re

sh
ol

d

si
m

ila
r(

)

P
ar

am
et

er
s

m
in

S
D

C
 :

in
t

m
ax

LB
 :

in
t

m
in

S
E

C
 :

in
t

ig
no

re
C

om
m

en
ts

 :
bo

ol
ea

n

P
ro

ce
ss

or

se
ar

ch
D

up
lic

at
es

()

*1 *1 en
tit

ie
s

1
1

1
1

m
at

rix
Li

ne
s

1

1

1

1

co
ol

M
at

rix

1
1

1
1

du
pl

ic
at

es

1

1

1

1

st
ra

te
gy

1

1

1

1
pa

ra
m

s

1

Fi
le

: F
:\e

du
\u

pt
\d

ip
lo

m
a\

do
cs

\fi
gu

re
s\

um
l\D

uD
e_

ar
ch

ite
ct

ur
e.

m
dl

 1

3:
54

:3
7

26
 iu

ni
e

20
05

 C

la
ss

 D
ia

gr
am

: L
og

ic
al

 V
ie

w
 /

M
ai

n
 P

ag
e

1

Figure 3.2: System architecture (UML)

32 CHAPTER 3. APPROACH

the MatchingStrategy abstract class and the concrete strategies that implement
it. They are used by the Processor to take decisions in wether to mark or
not a certain matrix (scatter-plot) cell. Depending on the concrete matching
strategy (ExactMatchingStrategy, LevenshteinMatchingStrategy or TokenLevel-
MatchingStrategy) the method that measures if the two compared strings are
”similar enough” is differently computed for each of them. This is an imple-
mentation of the Template Method design pattern, hence the concrete strategies
are different only when it comes to their implementation of the similar(String
s1, String s2) method. While the ExactMatchingStrategy returns a positive
result only if the two strings are identical, the other two approximate matching
strategies compute the similarity based on the distances (classic Levenshtein
and the token-level approach), and compare it with the threshold. Two strings
are similar enough, thus their corresponding matrix cell gets marked, only if the
computed similarity is higher than the threshold.

The expected output of the detection process is a DuplicationList object, that
contains all the duplication chains found by the Processor (class Duplication).

The VirtualMatrix is the element that brings the efficient management of mem-
ory and makes possible the dividing of the matrix into areas. When a matrix
zone is finished, the area is cleaned from the memory, by calling its freeLines(int
row) method. The internal structure of the VirtualMatrix can provide an Iter-
ator for every row (every row is a HashMap), which makes the chain building
way more rapid, after having the markings in the scatter-plot.

The CleaningDecorator is a combination of the Decorator and Chain of Re-
sponsibility design patterns [GHJV95], which implements a class that cleans
the code (brings it to a relevant form). If we will need another cleaner, we have
to create a new class that extends the CleaningDecorator abstract class, and we
can add it in the ”chain” of cleaners. This way, it is possible to dynamically com-
bine different cleaners. For the new approach, where we need to divide lines of
code into tokens, we replaced the old WhiteSpaceCleaner with a new filter called
CodeSpacer, that will surround operators and separators with white spaces and
in the end will eliminate multiple successive whitespace. We also replaced the
old NoiseCleaner with a new filter caller NoiseRegexCleaner, which eliminates
unwanted noise based on a list of regular expressions defining the noise. If the
ignoreComments option is ON, than the processor uses a chain of cleaners made
of: a comments cleaner, a codespacer and a noise regex cleaner. The Processor
object works with a CleaningDecorator, which is an abstract class, this way the
heuristic: program to an interface, not to a implementation is fully respected.
The sequence diagram (Fig. 3.3) describes the code cleaning process in terms
of time.

When the Processor calls the cleaner’s clean() method, the message goes to
the first cleaner in the chain. The CommentCleaner cleans the comments off
(by calling it’s own specificClean() method) and then calls the clean() method

3.2. SYSTEM ARCHITECTURE 33
Processor CommentCleaner CodeSpacer NoiseRegexCleaner

Processor CommentCleaner CodeSpacer NoiseRegex
Cleaner

1: cleaner.clean()

2: specificClean

3: next.clean()

4: specificClean()

5: next.clean()

6: specificClean()

7: return

8: return
9: return

File: F:\edu\upt\disertatie__thesis (disertatie)\fig\uml\cleaner_sequence.mdl 14:19:52 26 iunie 2005 Sequence Diagram: Logical View / codeCleaning Page 1

Figure 3.3: Code cleaning process (sequence diagram)

of the next cleaner in the chain (he does not need to know what type of cleaner
is next, thanks to polymorphism). The next cleaner, a CodeSpacer surrounds
the separators and operators with white space and cleans the extra white space
and then further delegates the next cleaner to clean the code by calling it’s clean
method. The last cleaner (NoiseRegexCleaner) cleans the lines considered noise
(which are defined in the noise.regex file, by means of the flexible mechanism of
regular expressions) and then returns, because it is the last in the chain (it does
not have a next cleaner). Step-by-step, the clean code return to the Processor
object.

In order to loosen the coupling between the Processor, the various Importer
instances on the one hand and the controller of the graphical user interface
(Fig. 3.4) on the other hand, we used the Observer design pattern. While
the GUI is a concrete observer and has knowledge of the concrete Subjects it
works with, the concrete Subjects (Importer and Processor) are not aware to
whom they are providing the results of their work. The Importer and Processor
are concrete Subjects, since they usually need time to provide results, while the
Exporter does not provide results other than the confirmation that the data has
been successfully exported. For the export and import features, there are at the
moment two formats available: the XML format, chosen as the standard for-
mat and a proprietary format named DUP, that has been used for experimental

34 CHAPTER 3. APPROACH

purposes to compare DuDe’s results with the results of the tools analyzed in
[Bel02].

ProcessorImporter

Subject

attach(Observer o)
dettach(Observer ...

notifyObservers()

GUI

Observer

getDuplication...

XMLImporter DupImporter

Exporter

XMLExporter DupExporter

File: F:\edu\upt\disertatie__thesis (disertatie)\fig\uml\gui_importer_processor_exporter_observer.mdl 14:12:02 26 iunie 2005 Class Diagram: Logical View / Main Page 1

Figure 3.4: Data exchange within DuDe

3.3 Data Exchange

One feature that we missed in the previous versions of DuDe was the possibility
to import results and settings from another analysis session. The need for this
was obvious in particular with large systems, where the detection process would
take many hours. From here it would be very useful if we could save this data
and restore the session someday without having to run the detection process
again. Furthermore, exporting the data in a file could make it usable by other
analysis tools.

3.3.1 XML Parsing

Due to the fact that a large number of software vendors have adopted the XML
standard and since there are already many libraries for the manipulation of
data within XML files, we chose this format as the main data exchange format
for DuDe. Moreover, an XML document with elements and attributes chosen,
based on the business domain, proves easy to read not to machines only, but

3.3. DATA EXCHANGE 35

also to humans.

The Extensible Markup Language (XML) is a simple, very flexible text for-
mat, designed to describe data. Originally designed to meet the challenges of
large-scale electronic publishing, XML is also playing an increasingly important
role in the exchange of a wide variety of data on the Web and elsewhere. XML
with an XML Schema is designed to be self-descriptive.

Over time, there have been implemented many mechanisms to access XML
documents, form which two major models (APIs) will be mentioned here:

• The SAX (Simple API for XML) model allows for simple parsers by al-
lowing parsers to read through a document in a linear way, and then
to call an event handler every time a markup event occurs (the parser
encounters different entities within the XML document). This is the pro-
tocol that most servlets and network-oriented programs will want to use
to transmit and receive XML documents, because it’s the fastest and least
memory-intensive mechanism that is currently available for dealing with
XML documents.

• The DOM (The Document Object Model) API is based on an entirely
different model of document processing than the SAX API. Instead of
reading a document one piece at a time (as with SAX), a DOM parser
reads an entire document. It then makes the tree for the entire document
available to program code for reading and updating. At the core of the
DOM API are the Document and Node interfaces. A Document is a top
level object that represents an XML document. The Document holds the
data as a tree of Nodes, where a Node is a base type that can be an
element, an attribute, or some other type of content.

Simply put, the difference between SAX and DOM is the difference between
sequential, read-only access, and random, read-write access. Since DuDe is an
intensive memory consumer and the data amount it export/import can reach
high quantities, we chose the SAX model over the DOM model. In the case
of large files, DOM is less appropriate due to the fact that it loads the whole
document right from the start in order to build its tree. SAX , with its serial
access mode would serve our purpose better.

3.3.2 Data Format

We will present the format of the exported/imported data by means of its XML
schema. An XML schema defines the content model (also called a grammar or
vocabulary) that its instance documents will represent. The schema is used by
the XML parsers to check an XML document for well-formedness and validity.
In order to gain an overall view of DuDe’s XML schema for exchange files, we

36 CHAPTER 3. APPROACH

will first present an intuitive diagram (Fig. 3.5). With this self-explanatory di-
agram in mind, we will briefly explain the XSD file (XML Schema Definition),
as a means to describe the exchange data.
F:_temp\dude\dude.xsd 06/25/05 15:04:59

©1998-2005 Altova GmbH http://www.altova.com Page 1EVALUATION VERSION!

DuDe Session

CloneDetection

Settings

attributes

StartingPath

Parameters

attributes

MinSDC

MaxLB

MinS...

CommentsIgnored

Matching

attributes

Strategy

Threshold

Results

attributes

Count

0..

DupChain

attributes

Type

Signature

CopiedLength

RealLength

2

CodeSnippet

attributes

FileName

From

To

Figure 3.5: Diagram of the XSD file

The root element, which as in every XML document contains all the data,
is CloneDetection, representing a clone detection session. The data DuDe is
exchanging, for a detection session, is made of the configuration, represented by
the Settings element and the detected duplication chains, which are comprised
by the Results element, as seen in Fig. 3.6.

The Settings element contains all the tunings made to the tool in order to
obtain exactly the same results, assuming we have access to the source code
of the analyzed project. The configuration of the tool is an important fact,
since it assures the repeatability of the experiments. The Settings element has
an attribute named StartingPath, which is used to set the path to the project

3.3. DATA EXCHANGE 37

 <?xml version="1.0" encoding="UTF-8" ?>
- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">
- <xs:element name="CloneDetection">
- <xs:annotation>
 <xs:documentation>DuDe Session</xs:documentation>

 </xs:annotation>
- <xs:complexType>
- <xs:sequence>
- <xs:element name="Settings">
- <xs:complexType>
- <xs:sequence>
+ <xs:element name="Parameters">
+ <xs:element name="Matching">

 </xs:sequence>
 <xs:attribute name="StartingPath" type="xs:string"

use="required" />
 </xs:complexType>

 </xs:element>
- <xs:element name="Results">
- <xs:complexType>
- <xs:sequence>
+ <xs:element name="DupChain" minOccurs="0"

maxOccurs="unbounded">
 </xs:sequence>
- <xs:attribute name="Count" use="required">
- <xs:simpleType>
- <xs:restriction base="xs:int">
 <xs:minInclusive value="0" />

 </xs:restriction>
 </xs:simpleType>

 </xs:attribute>
 </xs:complexType>

 </xs:element>
 </xs:sequence>

 </xs:complexType>
 </xs:element>

 </xs:schema>

Page 1 of 1

25.06.2005file://F:_temp\dude\tmp0000.xsd

Figure 3.6: The XSD file, not fully expanded

directory and two elements: Parameters and Matching.

The Matching element illustrated in Fig. 3.7 is related to the way the strings
are being compared and it has two attributes: Strategy (the matching strategy)
and Threshold (which is the minimum value of the similarity degree needed
in order to be considered ”similar enough”). The similarity threshold, which

38 CHAPTER 3. APPROACH

is expressed as a percentage, has a maxInclusive constraint of 100, while the
strategy has to be one of the enumerated values (Exact Matching, Token Level
Matching, Levenshtein Matching), which are all possible names of strategies.
Another value for the strategy would lead to file invalidation.

- <xs:element name="Matching">
- <xs:complexType>
- <xs:attribute name="Strategy" use="required">
- <xs:simpleType>
- <xs:restriction base="xs:string">
 <xs:enumeration value="Exact

Matching" />
 <xs:enumeration value="Token Level

Matching" />
 <xs:enumeration value="Levenshtein

Matching" />
 </xs:restriction>

 </xs:simpleType>
 </xs:attribute>
- <xs:attribute name="Threshold" use="required">
- <xs:simpleType>
- <xs:restriction base="xs:int">
 <xs:minInclusive value="0" />
 <xs:maxInclusive value="100" />

 </xs:restriction>
 </xs:simpleType>

 </xs:attribute>
 </xs:complexType>

 </xs:element>

Page 1 of 1

25.06.2005file://F:_temp\dude\tmp0000.xsd

Figure 3.7: The Matching element, fully expanded

The Parameters element, has four attributes representing the concrete pa-
rameters used in the clone detection process: minSDC (minimum size of dupli-
cation chains), maxLB (maximum line bias), minSEC (minimum size of exact
chunks) and CommentsIgnored. Each of the parameters belong to a data type
(int, boolean) and can be further controlled by constraints. For example, the
minSDC attribute has a minInclusive constraint of 1 (a duplication chain of size
0 makes no sense), while the maxLB has the same constraint with value 0 (we
want to be able to detect clones with no gaps). All these attributes are required
(use=”required”) in order to have a valid XML exchange file.

After importing data from an XML file, besides the checking and setting of
the starting path, the parameters are automatically set as the ones imported
(including the matching strategy) and the user is one-click-away (the Search
button) from repeating the experiment.

3.3. DATA EXCHANGE 39

The Results (Fig. 3.6) element has one attribute named Count, which repre-
sents the number of duplication chains found in the clone detection session. This
information is used to present the progress of the task (the XML parsing) to the
user, by displaying a progress bar. Otherwise, there would be impossible to guess
the number of clones in an event-based parsing (SAX). The Results element has
a number of DupChain elements, with a constraint indicating a minimum of
0 occurs (minOccurs=”0”) and no upper bound (maxOccurs=”unbounded”).

Every DupChain element has four attributes Type, Signature, CopiedLength
(number of relevant lines of code that have been copied) and RealLength (the
total number of lines of code on which the duplication chain extends, includ-
ing blank lines or lines with comments). In addition to that, every DupChain
element has precisely two CodeSnippet elements (minOccurs=”2” maxOc-
curs=”2”), which define the exact location of the involved code, by means of
the three attributes: FileName, From (starting line of code) and To (ending
line of code).

An example of an XML file, conforming to the presented schema is illustrated
in Fig. 3.8. While it is a precise, machine readable document, it is also easy to
read by the maintenance engineer.

Validation

Validation is the process of verifying that an XML document is an instance of a
specified XML schema. While parsing the XML document, the parser signalizes
every abnormality: unsatisfied constraints, missing elements or attributes. The
schema, besides the fact that avoids the coding of various tests in the parser,
assures that the data exported by another tool is valid to import in DuDe and
viceversa.

40 CHAPTER 3. APPROACH

F:_temp\dude\eclipse-ant_Tokenized Distance.xml 06/25/05 16:22:23

©1998-2005 Altova GmbH http://www.altova.com Page 1EVALUATION VERSION!

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <CloneDetection>
3 <Settings StartingPath="c:\home\ricky\cs\eclipse-ant">
4 <Parameters MinSDC="8" MaxLB="2" MinSEC="3" CommentsIgnored="true"/>
5 <Matching Strategy="Tokenized Distance" Threshold="80"/>
6 </Settings>
7 <Results Count="8">
8 <DupChain Type="DELETE" Signature="E5.D1.E6.D2.E10" CopiedLength="21" RealLength="52">
9 <CodeSnippet FileName="src\ant\BuildEvent.java" From="81" To="138"/>

10 <CodeSnippet FileName="src\ant\BuildEvent.java" From="152" To="203"/>
11 </DupChain>
12 <DupChain Type="EXACT" Signature="E24" CopiedLength="24" RealLength="25">
13 <CodeSnippet FileName="src\ant\DirectoryScanner.java" From="239" To="263"/>
14 <CodeSnippet FileName="src\ant\DirectoryScanner.java" From="299" To="323"/>
15 </DupChain>
16 <DupChain Type="MODIFIED" Signature="E5.M1.E5.M1.E11" CopiedLength="23" RealLength="27">
17 <CodeSnippet FileName="src\ant\DirectoryScanner.java" From="339" To="365"/>
18 <CodeSnippet FileName="src\ant\DirectoryScanner.java" From="460" To="489"/>
19 </DupChain>
20 <DupChain Type="COMPOSED" Signature="E3.M1.E5.M1,I1.E3.M1,I1.E3" CopiedLength="17" RealLength="20">
21 <CodeSnippet FileName="src\ant\IntrospectionHelper.java" From="351" To="370"/>
22 <CodeSnippet FileName="src\ant\IntrospectionHelper.java" From="381" To="405"/>
23 </DupChain>
24 <DupChain Type="EXACT" Signature="E20" CopiedLength="20" RealLength="23">
25 <CodeSnippet FileName="src\ant\taskdefs\compilers\DefaultCompilerAdapter.java" From="154" To="176"/>
26 <CodeSnippet FileName="src\ant\taskdefs\rmic\DefaultRmicAdapter.java" From="141" To="163"/>
27 </DupChain>
28 <DupChain Type="MODIFIED" Signature="E9.M1.E3.M1.E3" CopiedLength="17" RealLength="17">
29 <CodeSnippet FileName="src\ant\taskdefs\GenerateKey.java" From="186" To="202"/>
30 <CodeSnippet FileName="src\ant\taskdefs\GenerateKey.java" From="208" To="224"/>
31 </DupChain>
32 <DupChain Type="MODIFIED" Signature="E7.M1.E3.M1.E8" CopiedLength="20" RealLength="20">
33 <CodeSnippet FileName="src\mail\MailMessage.java" From="247" To="266"/>
34 <CodeSnippet FileName="src\zip\ZipEntry.java" From="160" To="179"/>
35 </DupChain>
36 <DupChain Type="DELETE" Signature="E5.D2.E5.D2.E8" CopiedLength="18" RealLength="48">
37 <CodeSnippet FileName="src\zip\ZipLong.java" From="70" To="121"/>
38 <CodeSnippet FileName="src\zip\ZipShort.java" From="70" To="117"/>
39 </DupChain>
40 </Results>
41 </CloneDetection>
42

Figure 3.8: Exported XML file

Chapter 4

Evaluation of the tool

4.1 Features

The graphical user interface (Fig. 4.1) offers a simple, yet powerful access to
the duplication chains detecting engine. The integrated workspace is composed
of:

• Menu bar that provides access to the whole set of commands, arranged in
a hierarchical structure.

• Toolbar, that provides buttons for the most used commands of the menu
bar.

• Configuration panel, accessible through the Set parameters command or
button. This settings panel provides control of both the parameters of the
detection process and the matching parameters (strategy and similarity
threshold).

• Results panel, consisting of a various modes sortable list of Duplication
chains

• Visualization panel, called Code Viewer for visual analysis of the dupli-
cated code involved in a duplication chain.

• Status bar, where the user is provided with brief information about the
success or failure of the current task and the progress status, by means of
a progress bar, visible when needed.

In order to analyze a project, first you have to set the starting path, where the
source files of the project are located. Then, you can modify the searching pa-
rameters, the matching strategy and the threshold and hit the Search button.
The searching process can be stopped at any time, by hitting the Stop button.
The status bar contains a progress bar, visible only during a search or import
process.

41

42 CHAPTER 4. EVALUATION OF THE TOOL

Figure 4.1: DuDe’s Graphical User Interface

After the searching is over, if any duplication chains were found, they will be
shown in a list of chains which can be sorted by any of: entity’s name, index to
the first or the last line of code in the chain, length, type etc.

The meanings of the different columns in the results table are:

• file1, file2 are the 2 files that share the duplicated code

• from1, to1 and from2, to2 are the line indexes in the 2 files where the
duplicated code starts and ends

• copied length is the length of the duplication chain

• file coverage is the number of duplicated lines of code between the start
line and the end line of the duplication. It is usually greater than the
copied length, because it may contain the noise and blank lines that were
rejected in the code cleaning phase, just before the analysis

• type of the duplication chain is the chain’s type (previously discussed)

• signature is a chain of <symbol><size> elements (separated by ’.’),
where size represents the number of lines and the symbols can be: E
(exact) for exact chunks and M (modified), I (insert) or D (delete) for
gaps, or a combination of M and I/D, separated by ’,’ for combined gaps.

4.1. FEATURES 43

In order to validate the duplication chains or to examine the results in a visual
manner, a mouse click on any of the items in the results list will display the
contents of the 2 files involved in that duplication in the Duplicate Viewer
panel, with the replicated code highlighted in yellow.

A useful feature offered by the tool is the possibility to consult a set of sta-
tistical data (Fig. 4.2) gathered during the last searching operation:

• number of analyzed entities,

• total number of lines of code

• number of relevant lines of code (clean lines of code)

• number of duplicated lines (the ones that are part of at least one duplica-
tion chain),

• the percentage of duplicated lines, a metric called coverage

• the number of found duplication chains

• elapsed time

Figure 4.2: Statistical Report

At the bottom of the window, there is a status bar, where the user will be given
information about operations (how many duplication chains were found during
a searching operation, current starting path or saving results).

In order to save a successful clone detection session, the user can click the
Export to XML button to export the data in an XML file, which can be later
on imported, a task that is less time consuming than the searching itself. This
command will save not only the results, but also the current configuration of
the tool.

44 CHAPTER 4. EVALUATION OF THE TOOL

The Import from XML gives the maintenance engineer the possibility to:

• continue analyzing the results of a successful clone detection session, by
directly using the imported results

• repeat a clone detection experiment, without the need to separately set
the configuration parameters, these being automatically set to the original
values during the import process.

4.1.1 Tunable Parameters

The configurability of the tool is reflected by the parameters related to the
proportional harmony and the to the matching strategy:

• minLength: minimum accepted length for the duplication chains (in LOC).
It defines a filter for the searching operation, which will eliminate the du-
plication chains considered irrelevant for the current case study.

• maxLineBias: the maximum size of non-matching gaps, or the line bias
(number of modified, inserted or deleted lines) between 2 exact chunks
within a duplication chain.

• minExactChunk: minimum accepted size of the exact chunks within a
chain.

• ignoreComments: the duplication searching engine can include the com-
ments in its analysis or not (optional, only for C,C++ and Java comments)

• Matching Strategy, can be selected one of: Exact Matching, Levenshtein
Matching and Tokenized Matching

• Similarity Threshold, is a value between 50 and 100 which is the minimum
accepted similarity degree, and can be modified just for the approximate
matching strategies (it is 100 for the exact matching strategy)

4.2 Experiment

The primary goal of this experiment is to see how the approximate matching
strategies compare with each other in order to validate the presumption that
the tokenized one provides more relevant results and is more scalable.

The experiment’s secondary goal was to compare the approximate matching
strategies with the exact matching, in terms of time performance and scalabil-
ity, number of detected clones and coverage (ratio between duplicated LOC and

4.2. EXPERIMENT 45

the total LOC).

By means of selecting the matching strategy presented in 3.1.5), the differ-
ent approaches could be tested with the same working conditions.

4.2.1 Experimental Setup

We choose 4 small to medium size projects written in Java and C that were
study cases in Bellon’s paper on evaluation of clone detecting tools [Bel02]. The
4 projects, covering the size range from up to 3 MB, are presented in Fig. 4.3.
The Java projects are in the higher half of the table, while the C projects are
located in the lower half of the table, so that we can later quickly make the
distinction between them. The C projects and the Java projects are sorted by
size (or number of lines). The LOC column is the number of lines of code, while
Relevant LOC is the number of lines of code excluding the comments and the
blank lines (we refer them as relevant lines of code) and this is actually the set
of lines of code that DuDe analyzed.

Project name Language No. of Files Size. (KB) LOC Relevant LOC
netbeans-javadoc Java 101 708 14360 8245
eclipse-ant Java 178 1503 34744 14780
weltab C 53 450 11591 9234
cook C 590 2814 80408 49041

Figure 4.3: Test projects

The experiment was conducted on a Pentium IV 2.8 GHz and 512 MB RAM ma-
chine running Windows XP. The configuration of the tool was set to: minSDC =
8, maxLB = 2, minSEC = 3, ignoreComments = on. For every project, the tool
ran three times (once for every matching strategies). The similarity threshold
was set to 80 % for the approximate matching strategies.

4.2.2 Interpretation of the Experiment’s Results

The results are concentrated in three tables. The first table (Fig. 4.4) presents
the time performance of the tool using the different matching strategies. While,
with the exact matching, all the projects were scanned within seconds, with
the longest one in under 2 minutes, the time performance with the approxi-
mate matching strategies falls dramatically. Compared to the exact matching
strategy, the Levenshtein distance based matching strategy is between 600 and
1600 times slower, while the token level matching strategy is between 200 and

46 CHAPTER 4. EVALUATION OF THE TOOL

300 times slower. This is hardly a precise result, because the exact matching
strategy depends purely on the number of relevant lines of code that will be
compared, while the approximate matching strategies depend on both the num-
ber of relevant lines and the length (in characters or tokens) of the lines of code.
While for the exact matching strategy, the comparison ends by the first non-
matching pair of characters, each of the approximate matching strategies builds
the whole matrix for every comparison. However, some time related conclusions
we can draw are:

1. The approximate matching strategies are way slower than the exact match-
ing strategy

2. Between the two approximate matching strategies, the Token-level Match-
ing is 3 to 6 time faster than the Levenshtein Matching.

Processing time (hh:mm:ss)
Project name EM LM TM

netbeans-javadoc 00:00:03 01:20:46 00:12:47
eclipse-ant 00:00:10 02:40:48 00:36:03
weltab 00:00:03 00:45:57 00:15:23
cook 00:01:19 14:09:12 04:33:00

Figure 4.4: Time performance

The next two tables (Fig. 4.5) present two closely related metrics: the number
of detected clones and the coverage. We will analyze these two tables correlated,
because there are interesting things that can be inferred from the correlation of
the two, which can be missed when analyzing them separately.

Judging by the number of detected clones with the Exact Matching Strategy
(EM), it seems that the C projects chosen have way more duplicaton than the
Java projects.

However, the netbeans-javadoc Java project analyzed with the Tokenized
Matching (TM) has many duplications, that are probably clones with renamed
variables (883 compared to only 51), while at the same time the coverage does
not grow so sudden (only 38 % compared to 16 %). A possible explanation
for this discrepancy comes from the families of clones, where the discovery of
another duplicated code fragment (which slightly increases the coverage) would
bring a high number of clones (the new code fragment with, sequentially every
member of the clone family).

4.2. EXPERIMENT 47

Number of detected clones
Project name EM LM TM

netbeans-javadoc 51 392 883
eclipse-ant 43 108 130
weltab 793 2139 1777
cook 2721 5537 6870

Coverage (%)
Project name EM LM TM

netbeans-javadoc 16 33 38
eclipse-ant 5 11 12
weltab 77 83 82
cook 19 35 32

Figure 4.5: Number of Clones vs Coverage

The eclipse-ant Java project provides moderated duplication in both cover-
age and number of clones. At the same time, the coverage did not jump so
high when switching between EM and TM (38 compared to 16). This project
behaves constant and moderate in all the cases. The coverage is very low (12 %
maximum), which confirms the quality of such a mature, open-source commu-
nity project. While the number of duplication chains gets approximately double
when switching from EM to LM or TM, the coverage follows the same pattern.
This could be a proof of good design, naming conventions (similar results from
both approximate matching strategies), and furthermore, a balanced distribu-
tion among the types of clones.

The weltab C project has the highest overall coverage and very high values
for every matching strategy. Moreover, looking at the slight difference between
the exact matching and the approximate matching strategies, we can say that
there is a very small percentage of clones with renamed variables. Although the
size of weltab is almost insignificant compared to the sizes of the other ”com-
petitors”, it has the highest coverage, which is an obvious cry for refactoring (
over 75% coverage means more than 3/4 of the lines of code have at least one
replica in the project).

The cook C project, is the biggest project among all. While providing the
biggest number of clones, it is not by far the worse project, due to the good
coverage results. It could be a second best after eclipse-ant. Moreover, many
of its duplication (more than half) are made of generated code, which is not
subject to refactoring, thus is less relevant. Nevertheless, the case provides a

48 CHAPTER 4. EVALUATION OF THE TOOL

strange result: while in terms of number of clones, LM is higher than TM, in
terms of coverage TM is higher than LM. The higher coverage of the TM could
be the correct result, while the higher number of clones with LM could have the
following explanation: some of the similar pairs could have been missed by LM
(see the example with he variables i and aLargerVariableReplacingI) and this
would lead to lower coverage on the one hand and a higher number of smaller
clones for LM on the other hand. The TM would have higher coverage due
to the similarities missed by LM and would have larger but fewer clones (just
consider one clone for TM and two half-size clones for LM).

4.2.3 Experimental Conclusions

It is time to draw conclusions on the practical applicability of the presented
approach:

• The exact matching is clearly superior in terms of performance to any
of the approximate matching strategies that we studied. This is a nat-
ural consequence of the complex dynamic algorithms that compute the
Levenshtein distance.

• Quite as we expected, the approximate matching strategy at token-level
is a few times faster than the classical (character-level) approach. This
can be explained through the fact that the number of tokens per LOC is
a few time smaller than the number of characters per LOC (since a token
can be made of a number of characters).

• Also, the relevance of the results is better for the tokenized approach, since
the renamings are applied to lexical elements (tokens).

Chapter 5

State of the Art

The problem of detecting clones in systems is an established software engineering
problem known to occur in many contexts, including during pattern detection,
software refactoring and perfective maintenance, system quality evaluation, and
class library reengineering.

Software clones have been a focus of research for at least a decade, and dozens
of papers on the topic have appeared. Current levels of interest in the topic
appear heightened: concerning both the phenomenon of software clones (how,
when, and why they occur, etc.), and the construction of clone detection tools.

Clones have been considered potential problems for maintenance [JO93]. Many
automated and semi-automated techniques for detecting clones have been pro-
posed over the years ([Bak92], [MLM96], [BYM+98]). Similar sorts of problems
and techniques occur also in other contexts such as memory compaction, effi-
cient delta-based storage, and plagiarism and copyright infringement detection
(e.g., [Gri81]).

5.1 Early Concerns

Ralph Johnson has taken a parse-tree based approach [Joh91] to finding repli-
cated code, but at that time the exhaustive search used on parse trees to identify
identical subtrees or subtrees related by change of parameter was found to be un-
successful because of time and space usage. Kenneth W. Church and Jonathan
I. Helfman published a paper [CH93] that presented a tool called Dotplot, which
they described as a program for exploring self-similarity in millions of lines of
text and code. Programs aimed at detecting student plagiarism have typically
used statistical comparisons of style characteristics such as the use of operators,
use of special symbols, frequency of occurrences of references to variables, or
the order in which procedures are referenced [Jan88]. Brenda S. Baker, in her

49

50 CHAPTER 5. STATE OF THE ART

’92 paper [Bak92] presented Dup, A Program for Identifying Duplicated Code.

5.2 Actual Concerns

Over the last years, researchers from all over the world spent increasing effort
in the field of software clone detection.

5.2.1 International Workshops

In October 2002 the First International Workshop on Detection of Software
Clones took place in Montreal, Canada. It was held in conjunction with ICSM’2002
and the Workshop on Source Code Analysis and Manipulation (SCAM’2002).
The workshop’s concern was mainly to present the results of a tool comparison
experiment, lead between January and April 2002. There were 4 tools which
were presented in the published papers on this workshop ([BYM+98], [KKI02],
[Kri01] and [DRD99]) that were compared and the whole experiments, along
with the results was presented in another work [Bel02].

The 2nd International Workshop On Detection Of Software Clones (IWDSC’2003)
was held in conjunction with WCRE’2003 in Victoria, British Columbia, Canada,
in November 2003. The aim of this half-day workshop was to bring together re-
searchers within the field of clone detection to critically assess the current state
of research, and to establish new directions and partnerships for research. Var-
ious techniques have been proposed for automatically and semi-automatically
detecting clones and refactoring them. Among the main concerns of this work-
shop:

• a study concerning why, how and when clones occur in industrial software
systems [KG03]

• a research effort to define new similarity measures and new approaches
aiming at reducing the computational cost [EM03]

• a study [NS03] of the effect of XP (eXtreme Programming)on the use of
code duplication

• discussion about software clones in the Web sites domain, with emphasis
on the issued of generated code [KHAM03]

• inspired by the information retrieval (IR) domain [WL03] proposed tech-
niques for evaluating the clone detectors based on simple performance
measures borrowed from information retrieval

5.3. FIERCE COMPETITION ON CLONE DETECTION 51

5.3 Fierce Competition on Clone Detection

Baxter et. al [BYM+98] presented in the paper simple and practical methods
for detecting exact and near miss clones over arbitrary program fragments in
program source code by using abstract syntax trees. He compares subtrees
searching for exact matches or similarity (near-exact). This approach is more
precise than the one based on comparing strings of characters, but on the other
hand is more language dependent (needs a parser for every programming lan-
guage) and is harder to scale up, because of the memory needed to store the
abstract syntax trees. It should also work slower because the processing time
needed to build those trees. By using standard parsing technology, their tool
(called CloneDR) detects clones in arbitrary language constructs, and computes
macros that allow removal of the clones without affecting the operation of the
program.

Kamiya et. al presented a Multi-Linguistic Token-based Code Clone Detection
System for Large Scale Source Code called CCFinder [KKI02]. The paper pro-
poses a new clone detection technique, which consists of transformation of input
source text and token-by-token comparison. Their process of clone detection is
done in 4 steps: a lexical analysis on the code (where whitespace is eliminated),
transformation of the resulting token sequence, match detection and formatting
the resulting clones (mapping the token positions into places in the correspon-
dent files). Kamiya’s paper also describes some metrics for evaluating clone
pairs and clone classes.

Krinke’s approach [Kri01] is based on fine-grained program dependence graphs
(PDGs) which represent the structure of a program and the data flow within it.
In these graphs, his tool called Duplix tries to identify similar subgraph struc-
tures which are stemming from duplicated code. Therefore he considers not
only the syntactic structure of programs but also the data flow within (as an
abstraction of the semantics). As a result, there is no tradeoff between precision
and recall.

The result of Rieger and Ducasse’s approach in [DRD99] is a visual tool called
Duploc which is written in Smalltalk and developed in the Software Composi-
tion Group at the University of Bern. Duploc is a lightweight, visual tool that
can generate a scatter-plot out of a set of files, and every mark on the scatter-
plot is a match between 2 lines of code. Clicking on a mark will open a view of
the 2 files involved with the implicated line of code highlighted. In their paper,
Rieger and Ducasse present some patterns (dot configurations) that often come
up, like exact copy, modified, delete or insert, which are the inspiration behind
the types of duplication chain identified in [DRD99]. Unfortunately, Duploc has
some problems when dealing with bigger projects. Another fact is that Duploc
has to be used by a trained person; identifying some of the duplications is not
very easy and is directly influenced by some approach-related factors like: the
current zoom level, the currently displayed area of the scatter-plot.

52 CHAPTER 5. STATE OF THE ART

5.4 Gapped Clones

An interesting approach is [UKKI02], based on the CCFinder [KKI02], discusses
the detection of so called ”gapped clones”, a concept very close to the one of
duplication chains. However, this approach is located at a finer granularity
(token level), not at the line of code level. Moreover, they do not take into
account the case of combined gaps (i.e., gaps made of both inserted or deleted
and modified tokens). The paper proposes a method to visualize the gapped
clone just as if they were actually detected, based on the detection results of
conventional code clones. While this approach only shows all the candidates of
gapped clones based on the output of CCFinder, our approach literally detects
them, being built around the duplication chain concept.

5.5 Levenshtein Distance Used in Clone Detec-
tion

The authors of [GADLF02] have proposed an interesting approach, involving the
use of the Levenshtein distance for clone detection. The paper’s main concern is
around the detection of duplicated web pages, which they consider to be pages
with the same structure but with different data (information to be displayed).
They map the HTML tags to an alphabet of symbols and then compare the
resulting strings by applying the Levenshtein distance. Comparing the distance
with a threshold, they are able to tell if the pages are structurally identical,
similar or largely different. Such a Levenshtein distance based approach, while
using the same distance is not scalable to industrial size projects for at least
two reasons. In order to map every token type of a software system to an
alphabet of symbols, the tool would get aid from at least a lexical analyzer,
which would result in the loss of language independence. Moreover, there could
be scalability problems, since the modern programming languages offer a large
number of lexical constructs.

5.6 Clones With Variables Renaming

Baker was interested in detecting ”sections of code that are the same except
for a systematic change of parameters such as identifiers and constants” in
[Bak92]. Baxter introduces the concept of ”near-miss clones” in [BYM+98]
in its abstract syntax tree based clone detection approach. The idea behind
this is to compute similarity based on identical node and different nodes in the
ASTs. The authors of [KKI02] also address the detection of clones with renamed
variables, by substituting the variables and constants names with generic names
in the preprocessing phase. While this approach detects type 2 [Bel02] clones,
it also introduces false positives (if one of the code fragments operates with the
same constant and the other code fragment uses different constants every time,
the generic name substitution would hide this information).

Chapter 6

Conclusion

The combination of flexibility at both levels of granularity, one by means of
the duplication chain concept at the level of lines of code sequences and the
other through matching techniques based on similarity, is a powerful mechanism.
None of the two concepts, taken separately could address both problems that
these two together do:

• detection of clones with renamed variables (type 2 clones)

• detection of clones with other types of modifications (type 3 clones)

In terms of scalability, none of the similarity based matchings is appropriate for
exhaustive analysis of industrial-size systems. However, the token-level similar-
ity approach, due to both the increased relevancy of its results and the better
time performances, can be used to detect clones with renamed variables (can-
didates for refactoring), once the problematic areas of the system have been
identified with the exact matching strategy.

6.1 Evaluation of Contribution

The similarity based on the Levenshtein distance, applied at the token-level is a
novel language-independent approach to detect clones with renamed variables.
Moreover, we provided strong tool support for the approximate matching strate-
gies and we also assessed the applicability, scalability and time performance of
the techniques presented in this thesis, based on concrete case-studies.

53

54 CHAPTER 6. CONCLUSION

6.2 Pros and Cons

Compared to the approach based on exact matching of lines of code, the token-
level Levenshtein distance based proposed in this thesis provides both advan-
tages and disadvantages. Both of these approaches find a place, however in
different situation, depending on the purpose of the analysis and the size of the
analyzed project.

6.2.1 Pros

• It is able to detect clones with renamed variables, which are an impor-
tant but less obvious part of the clones. Such clones are missed by clone
detectors which operate with line of code granularity

• Increased flexibility, with multiple combinations that can result by com-
bining the comparison of lexical elements sequences with the concept of
duplication chain

• High scalability

• Language independency (no need for lexical or syntactical analyzers)

6.2.2 Cons

• The weaker time performances are caused by the complex dynamic al-
gorithm used to compute the Levenshtein distance (especially the non
adapted version of the similarity based on the Levenshtein distance, which
performs comparisons on character level)

• In theory, there is a possibility to obtain false positives, for the similarity
between token sequences is computed based on no lexical or semantical in-
formation (the detector cannot determine whether a precise token is really
a variable or a constant). However, the case studies have proved that in
practice the probability to obtain false clones is extremely low, if a proper
similarity threshold is chosen.

6.3 Future Work

We are interested in studying, with aid of the supporting tool, possible corre-
lations between types of clones (and clones signatures) and general solutions
to eliminate them, which leads us towards a more active involvement in code
duplication refactoring.

Bibliography

[Ale79] Christopher Alexander. The Timeless Way of Building. Oxford
University Press, New York, 1979.

[Bak92] Brenda S. Baker. A Program for Identifying Duplicated Code.
Computing Science and Statistics, 24:49–57, 1992.

[Bak93] Brenda S. Baker. A Theory of Parameterized Pattern Matching:
Algorithms and Applications (Extended Abstract). In Proceedings
of the 25th ACM Symposium on Theory of Computing, pages 71–
80, May 1993.

[Bel02] Stefan Bellon. Vergleich von Techniken zur Erkennung duplizierten
Quellcodes. Master’s thesis, Universität Stuttgart, September
2002.

[BYM+98] Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’ Anna,
and Lorraine Bier. Clone Detection Using Abstract Syntax Trees.
In Proceedings ICSM 1998, 1998.

[CH93] Kenneth Ward Church and Jonathan Isaac Helfman. Dotplot: A
program for exploring self-similarity in millions of lines for text
and code. J. Computational and Graphical Statistics, 2(2):153–
174, June 1993.

[DRD99] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A lan-
guage independent approach for detecting duplicated code. In
Hongji Yang and Lee White, editors, Proceedings ICSM ’99 (In-
ternational Conference on Software Maintenance), pages 109–118.
IEEE, September 1999.

[EM03] Massimiliano Di Penta Ettore Merlo, Giuliano Antoniol. Complex-
ity and feasibility issues in object oriented clone detection. 2003.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Ad-
dison Wesley, 1999.

55

56 BIBLIOGRAPHY

[GADLF02] Massimiliano Di Penta Giuseppe Antonio Di Lucca and Anna Rita
Fasolino. An approach to identify duplicated web pages. In Proc. of
the 26 th Annual Computer Software and Application Conference
(COMPSAC) 2002, pages 481–486, 2002.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, Mass., 1995.

[Gri81] Sam Grier. A Tool that Detects Plagiarism in PASCAL Programs.
SIGSCE Bulletin, 13(1), 1981.

[Jan88] Hugo T. Jankowitz. Detecting Plagiarism in Student PASCAL
Programs. Computer Journal, 1(31):1–8, 1988.

[JO93] Ralph E. Johnson and William F. Opdyke. Refactoring and aggre-
gation. In Object Technologies for Advanced Software, First JSSST
International Symposium, volume 742 of Lecture Notes in Com-
puter Science, pages 264–278. Springer-Verlag, November 1993.

[Joh91] Ralph Johnson. Personal communication. 1991.

[KG03] Cory Kapser and Michael W. Godfrey. Toward a taxonomy of
clones in source code: A case study. In Proceedings of the First In-
ternational Workshop on Evolution of Large-scale Industrial Soft-
ware Applications (ELISA). IEEE, September 2003.

[KHAM03] Holger M. Kienle and Anke Weber Hausi A. Müller. In the web of
generated ”clones”. 2003.

[KKI02] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
CCFinder: A multi-linguistic token-based code clone detection sys-
tem for large scale source code. IEEE Transactions on Software
Engineering, 28(6):654–670, 2002.

[Kri01] Jens Krinke. Identifying similar code with program dependence
graphs. In Proceedings Eigth Working Conference on Reverse Engi-
neering (WCRE’01), pages 301–309. IEEE Computer Society, Oc-
tober 2001.

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics - Doklady, 10(8):707–710,
February 1966.

[MLM96] Jean Mayrand, Claude Leblanc, and Ettore M. Merlo. Automatic
detection of function clones in a software system using metrics. In
Proceedings of ICSM (International Conference on Software Main-
tenance), 1996.

[NS03] Eric Nickell and Ian Smith. Extreme programming and software
clones. 2003.

BIBLIOGRAPHY 57

[UKKI02] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro
Inoue. On detection of gapped code clones using gap locations.
In Proceedings Ninth Asia-Pacific Software Engineering Confer-
ence (APSEC’02), pages 327–336, Gold Coast, Australia, Decem-
ber 2002. IEEE.

[Wet04] Richard Wettel. Automated detection of code duplication clusters.
Diploma thesis, Department of Computer Science, ”Politehnica”
University of Timişoara, June 2004.

[WL03] Andrew Walenstein and Arun Lakhotia. Clone detector evaluation
can be improved: Ideas from information retrieval. 2003.

	Introduction
	Motivation
	Prerequisites
	Context
	Opponent Forces
	Solutions

	Outline

	Fundaments
	Principles
	Clone Related Bad Smells
	Eliminate Clones by Refactoring
	Design Patterns

	Tool Foundation
	Introducing DuDe
	Need for Duplication Chains
	Anatomy of a Duplication Chain
	Proportional Harmony
	Detection of Duplication Chains

	Approach
	Clone Detection Improvements
	The Idea
	The Levenshtein Distance
	Levenshtein-Based Similarity
	Token-Level Similarity
	Matching Strategies

	System architecture
	Data Exchange
	XML Parsing
	Data Format

	Evaluation of the tool
	Features
	Tunable Parameters

	Experiment
	Experimental Setup
	Interpretation of the Experiment's Results
	Experimental Conclusions

	State of the Art
	Early Concerns
	Actual Concerns
	International Workshops

	Fierce Competition on Clone Detection
	Gapped Clones
	Levenshtein Distance Used in Clone Detection
	Clones With Variables Renaming

	Conclusion
	Evaluation of Contribution
	Pros and Cons
	Pros
	Cons

	Future Work

	Bibliography

