AUTOMATED DETECTION OF
CoDE DUPLICATION CLUSTERS

BY
RICHARD WETTEL

DirLoMA THESIS

Faculty of Automatics and Computer Science of the
”Politehnica” University of Timigoara

Timigoara,

June 2004

Advisor:
Dr. Ing. Radu Marinescu

(© 2004 Richard Wettel

By eliminating the duplicates, you ensure that the code
says everything once and only once, which is the essence

of good design (Once And Only Once Rule).

Kent Beck

ACKNOWLEDGMENTS

I am very proud to have Dr. Radu Marinescu as my advisor. I am profoundly
indebted to him for his trust in me and for seeing my skills even when I was scep-
tical about it. Due to his permanent encouragement I was able to understand
that research is not something unreachable and too much above us, but rather
something that can be done with hard work and enthusiasm. Being around him
is a permanent source of inspiration to me.

The experiences I've been through in the LOOSE Research Group made me
feel fortunate. The great ideas that Dani Ratiu had, expressed in his rather
reserved way due to modesty, helped me many times over this project (by the
way, pair programming is really fun), as well as Pepi’s permanent availability
to discuss algorithms (and to share the scalability progress!). I learned a lot
with you guys. I would also like to thank Cristina and everyone else who tested
the tool, starting with its early versions. Without the feedback I got from her,
DuDe would have never become that reliable.

And to my lovely wife, Simy, for always being there for me.

Timisoara, Richard Wettel
june 13, 2004

Contents

1 Introduction

1.1

1.2
1.3

Motivation Lo
1.1.1 Context
1.1.2 Code duplication. Making of...
1.1.3 Why is code duplication a bad practice ? . .
1.1.4 Solutions
1.1.5 Desperate need for dedicated software tools?
Contribution
Outline,

2 Fundaments

2.1
2.2

2.3

2.4
2.5

3.1
3.2

3.3
3.4

Object-Oriented Programming
Object-Oriented Design
221 OCP
222 DIP
223 LSP
2.2.4 Putting it all together
Design Patterns
2.3.1 Observer
2.3.2 Chain of Responsibility
2.3.3 Template Method
2.34 Decoratoro
eXtreme Programming
What is Refactoring?
2.5.1 Solutions based on refactorings
2.5.2 Refactorings explained
3 State of the Art
Pioneers in clones field
Actual concerns on software clones
3.2.1 First International Workshop
3.2.2 Second International Workshop
Moretools L
Success of a clone detector

iv

B WO N e

[e23N3

CONTENTS

4 The Approach

4.1 Algorithm’s Principles
4.2 System architecture oL oL
4.3 Specificterms

5 Evaluation of the tool

5.1 Features e
5.1.1 Parameters
5.1.2 Controls

5.2 Running from Insider oo

5.3 Experiment o
53.1 Casestudy

5.4 DubDe’s Tterative Development

5.5 Summary of accomplished goals

6 Conclusion

6.1 Review.
6.2 Prosand Cons
6.2.1 Pros
6.2.2 COns o e
6.3 Evaluation of Contributions

6.4 Future work

Bibliography

38
38
43
46

53
53
95
56
96
96
60
62
63

66
66
67
67
67
68
68

71

Chapter 1

Introduction

1.1 Motivation

1.1.1 Context

All systems change during their life-cycles. This must be borne in mind when
developing systems expected to last longer than the first version.

I. Jacobson [JCJO92]

All software systems are subject to continuous evolution and maintenance ac-
tivities in order to eliminate defects and extend their functionalities.

We need to deal with code duplication in order to prevent some problems that
will appear when trying to adapt to the changes that are imminent in a real
software system (one that stands its first release).

1.1.2 Code duplication. Making of...

Definition 1.1 (Code clone) A code clone is a code portion in source files
that is identical or similar to another [KKI02].

Code duplications (or code clones) appear for a variety of reasons:
e Code reutilization by copying existing solution
e Failure to identify or use abstract data types
e Performance enhancement

e Accidents

CHAPTER 1. INTRODUCTION 2

Code reutilization misunderstood is when developers systematically copy previ-
ously existing code which solved a problem similar to the one they are currently
trying to solve. Programmers intent on implementing new functionality, find
some working code that performs a computation nearly identical to the one de-
sired, copy it entirely and then modify in place. In large systems, this method
may even become a standard way to produce variant modules. When build-
ing device drivers for operating systems, much of the code stays the same, and
only the part of the driver dealing with the device hardware needs to change.
In such a case, it is often for a device driver author to copy a whole existing,
trusted driver and just modify it where needed. While this is actually good
reuse practice, it complicates the maintenance issue of removing a bug found
in the "trusted” driver by replicating its code (and reusing its bugs) over many
new drivers.

Some duplication owe their existence to justifiable performance reasons. Sys-
tems with tight time constraints (like real-time systems) are often hand-optimized
by replicating frequent computations. An extra function call may mean extra
time that the system does not not afford to waste.

Duplicating code proves easy and cheap during the software development phase,
but it makes software maintenance much harder. Typically, the amount of du-
plicated code in a software system stands between 5% and 10% of the code, but
it can reach up to 50% [KGO3b].

In conclusion, copying code can be done out of the urge to finish the prob-
lem under time pressure and with the tentation to use an already implemented
solution in a impropriate way (and not by using the mechanisms provided by
the modern object-oriented programming languages).

1.1.3 Why is code duplication a bad practice ?

Associated Problems
e Errors can be difficult to fix (they are not located in only one place)
e Errors and bugs may be copied as well
e Change in requirements may be difficult to implement
e Code size unnecessarily increased.

So, detecting this symptom may prove to be a step towards finding some de-
sign problems. Duplication is a clear sign of bad information and complexity
management. Fowler considers it as the most striking of the bad smells in code
[FBBT99).

CHAPTER 1. INTRODUCTION 3

Copying and pasting code becomes a problem when it comes to changing the
code later. Every software system that is supposed to be kept alive after its
first release will inevitably have to face changes in the requirements.Redundant
code obstructs the system understanding during the maintenance activities, be-
cause of the amount of extra code to maintain and when one logical source of
change affects many replicated code fragments scattered throughout a program,
to adapt to a change, a programmer must find and update all the instances
of the duplicated fragment. To do this, he needs to know whether some code
fragment is duplicated and the exact location of its clones. Still, duplicating
the code is usually done under time pressure, and the probability of having the
duplications documented is quite low.

Continuity, one of Meyer’s criteria for evaluating modularity [Mey88], is also
affected because small changes to the specification would affect a larger number
of components if the code was duplicated.

The act of copying indicates the programmer’s intent to reuse the implementa-
tion of some abstraction. The act of pasting is breaking the software engineering
principle of encapsulation. [BYM™T98a].

One of the signs of rotting designs is immobility [Mar02b]. A system affected
by it has tangled code, that is practically impossible to reuse, where lots of
semantic duplication occur.

The essence to this section is that code duplication is bad, when it comes to
maintenance. The dynamics of the software requirements leaves no doubt that
either the code will change to adapt to the new specifications or will die. Be-
cause of errors that will have to be removed in every duplicated sequence of
code, or modifications to a duplicated code will make maintenance more expen-
sive than ir already is. We have ro address the code duplication issue.

1.1.4 Solutions

Poorly designed code does mainly the same thing in several places. An impor-
tant aspect of improving design is to eliminate duplicate code. By eliminating
the duplicates, you ensure that the code says everything once and only once,
which is the essence of good design [FBB*99]. Achieving this is usually done
by refactoring the duplicated code. In order to do that, one must first find the
duplications.

M. Rieger and S. Ducasse ([RD98]) mentioned some of the reengineering goals
related to the identification and removal of duplicated code:

e Identifying duplicated code in large scale system (100.000 lines) to huge
system.

CHAPTER 1. INTRODUCTION 4

e Improving maintenance. Detection helps the maintainer of a system to
make sure that some code fragment, where an error has been fixed, is not
copied a number of times with the error still in it or is fixed differently
at each location by maintainers who have no knowledge of each other’s
activities.

e Reducing maintenance cost. By detecting clones of a piece of code to be
maintained and merging the code into one instance, the multiplied effort
otherwise necessary to maintain all the clone instances is removed.

e Improving the code readability. By identifying duplicated code and refac-
toring it, the size of code is reduced. The level of abstraction is elevated
when similar code pieces are refactored in a new method. In one of the
FAMOOS [BBC*99] case studies, there was a method of 6000 lines of
C++ code, which is a nightmare in complexity by any standards.

e Improving compilation time. The less lines of code you have, the faster
your system is compiled.

e Reducing the footprint of the application. The less lines of code you have,
the smaller the executable of your application gets.

Poorly designed code usually takes more code to do the same things, often be-
cause the code quite literally does the same thing in several places. Thus an
important aspect of improving design is to eliminate duplicate code. By elimi-
nating the duplicates, you ensure that the code says everything once and only
once, which is the essence of good design. But before all these happen, we need
to locate the code duplication.

1.1.5 Desperate need for dedicated software tools?

Spotting the duplicated code can be sometimes obvious, but most of the time is
more subtle or can be easily missed, especially with large software systems (like
legacy systems, whose maintenance is not an easy task), which often contain
large amounts of duplicated code. Code analysis can be a time consuming ac-
tivity, therefor tools able to improve the speed and effectiveness of this process
are desired. Detecting the clones helps the maintenance activity by pointing
suspect zones that maybe should be refactored, reducing by that the costs of
maintenance.

This is impossible to be done by hand when dealing with industrial-size projects.
The fact that all we start with is a set of source files and no a priori information
about possible locations of code duplicates, suggests that exhaustive searching
has to be performed, which desperately calls for powerful tools support.

CHAPTER 1. INTRODUCTION 5

1.2 Contribution

The idea of implementing such a tool was born inside LOOSE Research Group
in Timigoara, a small group of enthusiasts concerned with quality analysis of
object-oriented software and reverse engineering. The benefits of using such a
tool were already known, from our experience of working with a similar tool
called Duploc [RD98] in analyzing systems from the industry. Duploc is a
Smalltalk program made in the Software Composition Group (SCG) from the
University of Bern, a group with whom we have a very fruitful collaboration
since several years.

We needed a similar tool, more adapted to our needs, and capable of inte-
grating with other existent tools developed in our group. Some good ideas to
improve the tool have been distilled out of those experiences.

So, we wanted a configurable tool capable of detecting code duplication, that
could be later integrated in the reengineering platform developed by LRG (In-
sider). The tool should be accurate, scalable to industrial-size projects, and
should stay language independent. With these in mind, a new tool was born
and the name was DuDe (Duplication Detector). The program, written in Java
has been developed in order to help during the code analysis activities.

The tool can be used either as a stand-alone program or as part of a reengineer-
ing platform developed in LRG called Insider. The duplication data provided
by DuDe are used by Insider in its own static analysis process, which consists
- among others - of metrics computation for quality measurement of software
design. The duplication data can also be used to define new detection strategies
[Mar02a] based on these duplication-related metrics.

The tool uses textual comparison to detect chains of duplicated code and it
can be parameterized, offering extra flexibility to the searching process. As for
the granularity of the comparison, the line of code (LOC) was chosen because
usually the Copy & Paste activities imply a number of lines of code, rather than
a single one.

Often, copying a fragment of code is accompanied by small modifications to
that code, aimed to adapt it to the current problem (by modifying, inserting or
deleting lines of code), which makes these duplications harder to find by simple
textual comparison. In spite of that, DuDe has been conceived to be able to
find duplication chains that include these modifications. The tool’s detection
engine is parameterizable and it can also cover other fine changes to the code
(renaming of variables, condensing of code into a single line, changing indenta-
tion, comments).

The searching parameters help the user to filter the results: minimum length
(in LOC) of the duplication chains, whether to analyze comments or not (very

CHAPTER 1. INTRODUCTION 6

useful to track a copy & paste activity made under pressure, where some of
the code was adapted, but not the comments), maximum line bias (in LOC)
which limits the number of lines of modified, inserted or deleted code within a
duplication chain and minimum length of the exact duplicated portions of code
(in LOC).

Thus Dude can find duplication chains that can be composed of a number of
exact duplicated sequences (that I will further refer as ezact chunks), separated
by fragments of modified, deleted or inserted lines of code.

Duplications are full objects that have references to the entities they belong
to (files or method bodies), the line indexes of the beginning and of the end of
the duplication chain, length, type (exact, modified, insert, delete or composed)
and signature, a feature that embeds the precise form of the chain, conceived
to retain the pattern that a visual tool would offer by displaying the scatter-plot.

The tool presented in this work is appropriate for analyzing software systems
written in any language (because the matching is done by textual comparison)
and is scalable (it has been successfully applied on software systems from 100
KB to 30 MB).

1.3 Outline

Chapter 2 describes today’s software engineering fundament. We will make a
short review on the mechanisms offered by modern object-oriented program-
ming languages, of the principles that help when looking for a good software
design. There is a section dedicated to design patterns, some refactorings to
use when eliminating the bad smells of code related mainly to code duplication.
And there is a short section on the practices that make extreme programming
so interesting.

Chapter 3 discusses the state of the art in the field of code duplication de-
tection, related to object-oriented design. There has been some international
concern towards clone detection and tools support, materialized in 2 conferences
(2002 and 2003). The first conference has been in some way a benchmark to
some of the tools in this field of research. The position of the tool in the con-
text of actual tools is also discussed. After discussing the pros and cons of the
existent tools, we prepared a list with the most desirable features that a clone
detector should have.

After setting up the environment, the problem and other authors’ work, chap-
ter 4 presents this work’s approach on detecting the duplicated code. It cuts
through directly to the principles on which algorithm for clone detecting relies

CHAPTER 1. INTRODUCTION 7

on. Then, a short description of the system architecture is presented, along with
UML class diagrams, for a deeper understanding of the approach. Chapter 4
ends with a list of specific terms used when describing the algorithm.

Chapter 5 does an evaluation of the work, along with reports on the results
of applying the clone detector to a suite of 8 running software systems. It starts
with a brief presentation of the tool’s features (graphical user interface, con-
figuring the detection process through parameters). Then we get a glimpse of
the experience of integrating DuDe in an integrated analysis platform (Insider)
and the way they interact. Next, DuDe is subject of an experiment that should
prove its industrial strength (8 C/C++ and Java projects, the same that were
used when testing the tools on the First International Workshop on Detection
of Software Clones). Then, I tried to look deeper into the results reported by
the tool and to conclude some more. The case study is java swing, with an
interesting result. The last section of the chapter is confronting the list from
chapter 3.

Chapter 6 draws a line, taking us to the conclusions. There is a section on
good and bad regarding DuDe. A brief evaluation of the personal contribution
of this work and a final report on possible future work on this tool.

Chapter 2

Fundaments

This chapter’s goal is to introduce some of the idioms and principles that guide
nowadays the object oriented design and programming.

2.1 Object-Oriented Programming

Object-oriented methods provide a set of techniques for analyzing, decomposing,
and modularizing software system architectures. The object-oriented program-
ming is concerned with implementation issues and is highly dependent on the
object-oriented programming languages.

The main mechanisms provided by the modern object-oriented programming
languages are:

1. abstract data types (classes)
2. encapsulation

3. inheritance

4. polymorphism

Encapsulation is basically described as hiding data. Objects generally do not
expose their internal data members to the outside world (that is, their visibility
is protected or private). But encapsulation refers to more than hiding data.

The advantage of using encapsulation is that more we make our objects re-
sponsible for their own behaviors, the less the controlling programs have to be
responsible for. Encapsulation makes changes to an objects internal behavior
transparent to other objects. Encapsulation helps to prevent unwanted side
effects. With encapsulation the data structure of a class is hidden behind an
interface of operations.

CHAPTER 2. FUNDAMENTS 9

Inheritance is another vital mechanism of object-oriented programming. In-
stead of defining every time new types from scratch, we can use types (classes)
that already exist and specialize them. This is the support for the is-a relation-
ship: having one class be a special kind of another class. The base class (called
the superclass) can be extended by any number of new classes and this is how
class hierarchies appear.

Polymorphism is the ability of related objects to implement methods that
are specialized to their type. We are able to refer to different derivations of a
class in the same way, but getting the behavior appropriate to the derived class
being referred to. This way, it offers basis for flexible architectures and designs.
The high-level logic is defined in terms of abstract interfaces (the ”program to
an interface not to an implementation” heuristic), and relies on the specific im-
plementation provided by the subclasses. What we apparently refer are objects
with one type of reference that is an abstract class type. However, what we are
actually referring to are specific instances of classes derived from their abstract
classes. The subclasses can be added without changing high-level logic. Ob-
jects of the subclasses can be dynamically interchanged without affecting their
clients.

2.2 Object-Oriented Design

The object-oriented design is a method for decomposing software architectures,
based on the objects every system or subsystem manipulates. It stays relatively
independent of the programming language used.

2.2.1 OCP

One of the most important principle in software engineering is the Open-
Closed Principle ([Mar02b] citing Bertrand Meyer). This principle states
that software entities (classes, modules, functions, etc.) should be open for ex-
tension, but closed for modification. It says that you should design modules
that never change. When requirements change, you extend the behavior of such
modules by adding new code, not by changing old code that already works.

Modules that conform to the open-closed principle have two characteristics:

e They are Open For Extension. This means that the behavior of the
module can be extended. That we can make the module behave in new
and different ways as the requirements of the application change, or to
meet the needs of new applications.

CHAPTER 2. FUNDAMENTS 10

e They are Closed for Modification. The source code of such a module
is inviolate. No one is allowed to make source code changes to it. It
would seem that these two attributes are at odds with each other. The
normal way to extend the behavior of a module is to make changes to that
module. A module that cannot be changed is normally thought to have a
fixed behavior. How can these two opposing attributes be resolved?

Abstraction is the key: the module has to depend on an abstract class, not on
a concrete class (Fig. 2.1). In order to adapt to changes in the requirements,
all we need to do is to create a new class that inherits from the base abstract
class and to specialize the method affected by the changes.

Client server Server Client server | AbstractServer

*clientAction() *serverAction() *clientAction() *serverAction()

| | A
| | |

... oo *serverAction()

" ...] Server
server.serverAction(); server.serverAction();

Example of a closed client Example of a open client

Figure 2.1: Open-closed principle

2.2.2 DIP

Martin’s Dependency Inversion Principle provides the means to respect
the Open-Closed Principle. This principle gives theoretical support to avoid
bad design. Martin’s symptoms of bad design are:

e rigidity which is described by the difficulty to change the software, because
it would affect too many other parts of the system

e fragility is the property of a software system that would break in unex-
pected parts if one would make a change somewhere in the system.

e tmmobility is the impossibility to reuse system’s code because of the strong
coupling between the subsystems.

The principle states that high level modules should not depend upon low level
modules. both should depend upon abstractions. or, in other words abstrac-
tions should not depend upon details. details should depend upon abstractions.

CHAPTER 2. FUNDAMENTS 11

The traditional software development methods, such as structured programming
tend to create software structures in which high level modules depend upon low
level modules, and in which abstractions depend upon details.

2.2.3 LSP

The Liskov Substitution Principle states that ”Subclasses should be substitutable
for their base classes. This is the main idea behind the mechanism of polymor-
phism. This principle’s concept is that a user of a base class should continue to
function properly if a derivative of that base class is passed to it.

This may seem obvious, but there are subtleties that need to be considered.
The canonical example is the Circle/Ellipse dilemma, depicted in fig. 2.2.

The Circle/Ellipse Dilemma. Most of us learn, in high school math, that

ElipseClient Ellipse

Circle

Figure 2.2: Circle/Ellipse dillema

a circle is just a degenerate form of an ellipse. All circles are ellipses with
coincident foci. This is-a relationship tempts us to model circles and ellipses
using inheritance. While this satisfies our conceptual model, there are certain
difficulties. Ellipse modelled as a software entity does not correspond to that
is-a relationship. While the Circle really only needs two data elements, a center
point and a radius, the Ellipse needs are slightly different (two are the foci and
the the length of the major axis).

Still, if we ignore the slight overhead in space, we can make Circle behave
properly by overriding its SetFoci method to ensure that both foci are kept at
the same value.

CHAPTER 2. FUNDAMENTS 12

void SetFoci(Point a, Point b)
{

itsFocusA
itsFocusB

a;
a;

}

This way we will have an Ellipse entity that will change both its foci at one
time. The problem that we have is when clients of the ellipse will work with
an instance of a Circle. If, for example the client will change first the first fo-
cus and than the second he will expect (and possibly could make a unit test
case) that the major axis corresponds to the value mathematically calculated.
Instead, it will get another value, because he actually changed the radius of the
circle two times, so the first value is gone. If we were to make the contract of
Ellipse explicit, we would see a postcondition on the SetFoci that guaranteed
that the input values got copied to the member variables, and that the major
axis variable was left unchanged. Clearly Clircle violates this guarantee because
it ignores the second input variable of SetFoci.

Design by Contract. Restating the LSP, we can say that, in order to be
substitutable, the contract of the base class must be honored by the derived
class. Since Clrcle does not honor the implied contract of Ellipse, it is not sub-
stitutable and violates the LSP.

To state the contract of a method, we declare what must be true before the
method is called. This is called the precondition. If the precondition fails,
the results of the method are undefined, and the method ought not be called.
We also declare what the method guarantees will be true once it has completed.
This is called the postcondition. A method that fails its postcondition should
not return.

Restating the LSP once again, this time in terms of the contracts, a derived
class is substitutable for its base class if:

1. Tts preconditions are no stronger than the base class method.
2. Its postconditions are no weaker than the base class method.

Or, in other words, derived methods should expect no more and provide no less.

As a conclusion, it proves that other than what we know from the world that
we live in, when it comes to software, an IS-A relationship always refers to the
behavior of the class.

CHAPTER 2. FUNDAMENTS 13

2.2.4 Putting it all together

The relation between the 3 principles enounced by Robert Martin ([Mar02b] is:
Open-Close states the goal, Dependency-Inversion provides the mechanism to
accomplish that goal, while Liskov’s Substitution Principle is the insurance for
the mechanism.

2.3 Design Patterns

Designing object-oriented software is hard, and designing reusable object-oriented
software is even harder. Your design should be specific to the problem at hand
but also general enough to address future problems and requirements. Expe-
rienced object-oriented designers will tell you that a reusable and flexible de-
sign is difficult if not impossible to get "right” the first time. Yet experienced
object-oriented designers do make good designs. What is the magic behind the
solutions of experienced designers, that makes such a difference?

Expert designers do not necessary know to solve every problem from first prin-
ciples. Rather, they reuse solutions that have worked for them in the past.
When they find a good solution, they use it again and again. Such experience is
part of what makes them experts. Consequently, you’ll find recurring patterns
of classes and communicating objects in many object-oriented systems. These
patterns solve specific design problems and make object-oriented designs more
flexible, elegant, and ultimately reusable. They help designers reuse successful
designs by basing new designs on prior experience. A designer who is familiar
with such patterns can apply them immediately to design problems without
having to rediscover them.

Most of the programmers when reading the requirements have at least once
had the feelings they already solved that problem, or a similar one. If they
could remember the essence of the solution, they would only have to adapt it
to the specifics of the problem and not reinvent it all over.

Definition 2.1 (Pattern) ”Each pattern describes a problem which occurs
over and over again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice” [Ale79]. (C. Alexander,
The Timeless Way of Building, 1979)

The book ”"Design Patterns: Elements of Reusable Object-Oriented Software”
[GHIV95] by the Gang of Four (GOF) does exactly that: makes that experience
knowledge persistent, by associating a software architecture problem that often

CHAPTER 2. FUNDAMENTS 14

comes up, the solution to that problem and the consequences of applying that
solution with a name:

e the problem explains when to apply the pattern, namely the problem and
the context it is associated with

e the solution describes the elements that make up the design, their relation-
ships, responsibilities, and collaborations. The solution does not describe
a particular concrete design or implementation, because a pattern is like
a template that can be applied in many different situations. Instead, the
pattern provides an abstract description of a design problem and how a
general arrangement of elements (classes and objects in our case) solves
it.

e The consequences are the results and trade-offs of applying the pattern.
They are critical for evaluating design alternatives and for understand-
ing the costs and benefits of applying the pattern. The consequences for
software often concern space and time trade-offs. They may address lan-
guage and implementation issues as well. Since reuse is often a factor in
object-oriented design, the consequences of a pattern include its impact
on a system’s flexibility, extensibility, or portability. Listing these conse-
quences explicitly helps you understand and evaluate them. The conse-
quences help us putting in balance the advantages and disadvantages of
one solution or another and choosing the one the serves or purposes the
best.

e the name of the pattern is the element that enriches our design vocabu-
lary and lets us express in a word or two a design problem, its solutions,
and consequences. Naming a pattern lets us design at a higher level of
abstraction.

While different mechanisms offered by the object-oriented programming lan-
guages (i.e. inheritance) provide means for the reuse of software, design patterns
are the key for the reuse of design.

In this chapter we will discuss some of the patterns used in the architecture
of DuDe and other patterns that have to do, in a way or the other, with code
duplication.

2.3.1 Observer

The Observer pattern defines a one-to-many dependency between objects so
that when one object changes state, all its dependents are notified and updated
automatically.

The structure is presented in fig. 2.3. There may be many observers and the

CHAPTER 2. FUNDAMENTS 15

Subject ohservers Observer
Attach{Observer) Update()
Detact ; g
Detach(Qbserver) for all 0 in obsarvers | =
Motity() o - - - -4 - o-zUpdate()
I
KLF\‘ ConcreteObserver
. stibject b oS -
ate o-- -4 observerstate
ConcreteSubject | Update() subject-~GelState()
GetStatal) G---1—1) i ™ obsanvarstate
SetState(} refum subjectStale
subjectState

Figure 2.3: Observer

only thing they have to share is extending the Observer abstract class. Each
observer may react differently to the same notification from the ConcreteSub-
ject. The data-source (Subject) should be as decoupled as possible from the
observer to allow observers to change independently of the subject. The Sub-
ject is completely decoupled, for it knows only that it has a list of subscribers
(Observer objects) that it has to notice when something in its state changes.
This is why the Observer pattern is also known as Publish-Subscribe. An ex-
ample of interaction between a subject and two observers is presented in fig. 2.4.

The consequences of applying the Observer pattern are:

aConcreteSubject aConcreteObserver anotherConcreteObserver

L SetState()

Motify() L

Update() _

GetState() }
Update() _
GetState()

T

Figure 2.4: Sequence diagram for Observer

1. The Observer pattern lets you vary subjects and observers independently.
You can reuse subjects without reusing their observers, and vice versa. It
lets you add observers without modifying the subject or other observers.

CHAPTER 2. FUNDAMENTS 16

2. Abstract coupling between Subject and Observer. All a subject knows
is that it has a list of observers, each conforming to the simple interface
of the abstract Observer class. The subject doesn’t know the concrete
class of any observer. Thus the coupling between subjects and observers
is abstract and minimal.

3. Support for broadcast communication. Unlike an ordinary request, the
notification that a subject sends needn’t specify its receiver. The notifi-
cation is broadcast automatically to all interested objects that subscribed
to it. The subject doesn’t care how many interested objects exist; its only
responsibility is to notify its observers. This gives you the freedom to add
and remove observers at any time. It’s up to the observer to handle or
ignore a notification.

4. Unexpected updates. Because observers have no knowledge of each other’s
presence, they can be blind to the ultimate cost of changing the subject.
A minor operation on the subject may cause a cascade of updates to
observers and their dependent objects. Moreover, dependency criteria
that aren’t well-defined or maintained usually lead to false updates, which
can be hard to track down.

2.3.2 Chain of Responsibility

Avoid coupling the sender of a request to its receiver by giving more than one
object a chance to handle the request. Chain the receiving objects and pass the
request along the chain until an object handles it.

The structure (fig.2.5) of this pattern helps avoiding the coupling of the sender
of a request to its receiver by giving more than one object a chance to handle
the request. Chain the receiving objects and pass the request along the chain
until an object handles it.

An example of building the chain is described in fig. 2.6. After building
the chain, a client calls the handle() method of the first element of the chain. If
this cannot handle the request, it transmits the request over to the next element
in the chain.

A typical example of applying this pattern is context-sensitive help facility
for a graphical user interface. The user can obtain help information on any
part of the interface just by clicking on it. The help that’s provided depends on
the part of the interface that’s selected and its context; for example, a button
widget in a dialog box might have different help information than a similar but-
ton in the main window. If no specific help information exists for that part of
the interface, then the help system should display a more general help message
about the immediate context the dialog box as a whole, for example. This
interaction is captured in the 2.7 sequence diagram.

The problem here is that the object that ultimately provides the help isn’t

CHAPTER 2. FUNDAMENTS

Client

SUCCE5S0T
m= Handler
HandleRequesiy}
ConcreteHandler1 ConcreteHandler2

HandieRequest()

HandleRegueast()

Figure 2.5: Class diagram for Chain Of Responsibility

@isnt

|' aConcreteHandler]
l aHandler = | f aConcreteHandler]
|. SuCcessor iy

aPrintButton

L

SUCCESSE0T

Figure 2.6: Building the chain

HandleHelp()

aPrintDialog anApplication

HandleHelp(}

Figure 2.7: Interaction within the chain

17

CHAPTER 2. FUNDAMENTS 18

known explicitly to the object (e.g., the button) that initiates the help request.
What we need is a way to decouple the button that initiates the help request
from the objects that might provide help information. The Chain of Responsi-
bility pattern defines how that happens.

The consequences of applying this pattern are:

e Reduced coupling. The pattern frees an object from knowing which other
object handles a request. An object only has to know that a request will
be handled ”appropriately.” Both the receiver and the sender have no
explicit knowledge of each other, and an object in the chain doesn’t have
to know about the chain’s structure.

o Added flexibility in assigning responsibilities to objects. Chain of Respon-
sibility gives you added flexibility in distributing responsibilities among
objects. You can add or change responsibilities for handling a request by
adding to or otherwise changing the chain at run-time. You can combine
this with subclassing to specialize handlers statically.

e Receipt isn’t guaranteed. Since a request has no explicit receiver, there’s
no guarantee it’ll be handledthe request can fall off the end of the chain
without ever being handled. A request can also go unhandled when the
chain is not configured properly.

2.3.3 Template Method

Define the skeleton of an algorithm in an operation, deferring some steps to sub-
classes. Template Method lets subclasses redefine certain steps of an algorithm
without changing the algorithm’s structure.

This pattern is directly related to code duplication. The use of this pattern
can avoid duplicating code. The Template Method pattern should be used to
implement the invariant parts of an algorithm once and leave it up to subclasses
to implement the behavior that can vary.

1. When common behavior among subclasses should be factored and local-
ized in a common class to avoid code duplication. You first identify
the differences in the existing code and then separate the differences into
new operations. Finally, you replace the differing code with a template
method that calls one of these new operations.

2. To control subclasses extensions.

Consider an application framework that provides Application and Document
classes. The Application class is responsible for opening existing documents
stored in an external format, such as a file. A Document object represents
the information in a document once it’s read from the file.Applications built
with the framework can subclass Application and Document to suit specific

CHAPTER 2. FUNDAMENTS 19

needs. For example, a drawing application defines DrawApplication and Draw-
Document subclasses; a spreadsheet application defines SpreadsheetApplication
and SpreadsheetDocument subclasses. The relations between the classes are de-
scribed in the fig. 2.8 class diagram.

docs
Document [l—A Application
Savel) AddDocument()
Open{) OpenbDocurmeant])
Close() DoCreateDocurment)
DaRead|) CanCpenDocurments
ZLF\ AboutTolpenDocumenkti)
MyDocument a----------1 WyApplication
DoRead) DoCreateDocument) @{------- return new hMyDocument
CanOpenDocumeant()
AboutToOpenDocument()

Figure 2.8: Example of applying TemplateMethod

The abstract Application class defines the algorithm for opening and reading a
document in its OpenDocument operation:

void Application::OpenDocument (const char* name)

{
if (!CanOpenDocument (name))
{
// cannot handle this document
return;
}
Document* doc = DoCreateDocument () ;
if (doc)
{
_docs->AddDocument (doc) ;
AboutToOpenDocument (doc) ;
doc->0pen() ;
doc->DoRead () ;
}
}

OpenDocument defines each step for opening a document. It checks if the doc-
ument can be opened, creates the application-specific Document object, adds it
to its set of documents, and reads the Document from a file.

CHAPTER 2. FUNDAMENTS 20

OpenDocument is a template method. A template method defines an algorithm
in terms of abstract operations that subclasses override to provide concrete be-
havior. Application subclasses define the steps of the algorithm that check if
the document can be opened (CanOpenDocument) and that create the Docu-
ment (DoCreateDocument). Document classes define the step that reads the
document (DoRead). The template method also defines an operation that lets
Application subclasses know when the document is about to be opened (About-
ToOpenDocument), in case they care.

Template methods are a fundamental technique for code reuse. They are par-
ticularly important in class libraries, because they are the means for factoring
out common behavior in library classes. It’s important for template methods to
specify which operations are hooks (may be overridden) and which are abstract
operations (must be overridden). To reuse an abstract class effectively, subclass
writers must understand which operations are designed for overriding.

2.3.4 Decorator

Sometimes we want to add responsibilities to individual objects, not to an en-
tire class. A graphical user interface toolkit, for example, should let you add
properties like borders or behaviors like scrolling to any user interface compo-
nent.One way to add responsibilities is with inheritance. Inheriting a border
from another class puts a border around every subclass instance. This is in-
flexible, however, because the choice of border is made statically. A client can’t
control how and when to decorate the component with a border.A more flexible
approach is to enclose the component in another object that adds the border.
The enclosing object is called a decorator. The decorator conforms to the
interface of the component it decorates so that its presence is transparent to
the component’s clients. The decorator forwards requests to the component
and may perform additional actions (such as drawing a border) before or after
forwarding. Transparency lets you nest decorators recursively, thereby allowing
an unlimited number of added responsibilities.

For example, if we had a TextView object that displays text in a window.
Text View has no scroll bars by default, because we might not always need them.
When we do, we can use a ScrollDecorator to add them. Suppose we also want
to add a thick black border around the TextView. We can use a BorderDecora-
tor to add this as well. We simply compose the decorators with the TextView to
produce the desired result. The following object diagram shows how to compose
a TextView object with BorderDecorator and ScrollDecorator objects to produce
a bordered, scrollable text view (fig. 2.9).

The ScrollDecorator and BorderDecorator classes are subclasses of Decorator,

CHAPTER 2. FUNDAMENTS 21

[aBorderDeacorator '|
|

component @

ﬁcmlEDemrator
|

component

)

Figure 2.9: Example of composing

an abstract class for visual components that decorate other visual components
(fig. 2.10.

VisualComponent is the abstract class for visual objects. It defines their draw-

VisualComponant
Draw()

A

component
TextView Dacorator —
Dirawl) Draw({} o-——-q--——-—=-——==-—=———----—-+ component-=Draw() T
ScrollDecorator BorderDecorator
- Decorator:Drawt); =
Draw() Draw() O-------—f--—---- DrawBorde);
ScroliTof) DirawBorder)
scroliPasition borderWidth

Figure 2.10: Example of applying Decorator

ing and event handling interface. The Decorator class simply forwards draw re-
quests to its component and the Decorator subclasses can extend this operation.

Decorator subclasses are free to add operations for specific functionality. For
example, ScrollDecorator’s ScrollTo operation lets other objects scroll the inter-
face if they know there happens to be a ScrollDecorator object in the interface.

The important aspect of this pattern is that it lets decorators appear anywhere
a VisualComponent can. That way clients generally can’t tell the difference
between a decorated component and an undecorated one, and so they don’t
depend at all on the decoration.

The structure of this pattern is described in the next class diagram (fig. 2.11).

CHAPTER 2. FUNDAMENTS 22

Component

Operation])

A

24

component
ConcreteComponent Decorator ————
Ciperationd) Operation() O-p--—-==-=-==-———=-—-———+ componant->Cparation()
ConcreteDecoratorA ConcreteDecoratorB
. . Decorator:Oparation();]
Operatian(} Operalion{) Q------7------ AddedBehavior():
AddedBehavior()

addedState

Figure 2.11: Structure of Decorator

eXtreme Programming

XP is a lightweight methodology for small to medium-sized teams developing
software in the face of vague or rapidly changing requirements [Bec00]. XP
takes commonsense principles and practices to extreme levels:

If code reviews are good, we’ll review code all the time (pair programming).

If testing is good, everybody will test all the time (unit testing), even the
customers (functional testing).

If design is good, we’ll make it part of everybody’s daily business (refac-
toring).

If simplicity is good, we’ll always leave the system with the simplest de-
sign that supports its current functionality (the simplest thing that could
possibly work).

If architecture is important, everybody will work defining and refining the
architecture all the time (metaphor).

If integration testing is important, then we’ll integrate and test several
times a day (continuous integration).

If short iterations are good, we’ll make the iterations really, really short-
seconds and minutes and hours, not weeks and months and years (the
Planning Game).

CHAPTER 2. FUNDAMENTS 23

The XP philosophy is best described by:

e carly, concrete, and continuing feedback from
e short iterations, incremental planning approach

e reliance on automated tests written by programmers and customers to
monitor the progress of development, to allow the system to evolve, and
to catch defects early.

e the ability to flexibly schedule the implementation of functionality, re-
sponding to changing requirements

The XP practices include:

e small releases: first, the programmer will quickly write a simple program,
then release new versions on a very short cycle

e testing: programmers continually write unit tests, which must run flaw-
lessly for development to continue. Customers write tests demonstrating
that features are finished

e refactoring: programmers restructure the system without changing its be-
havior to remove duplication, improve communication, simplify, or add
flexibility

On the 2nd International Workshop On Detection Of Software Clones (IWDSC’2003),
Eric Nickell and Tan Smith [NS03] describe the effect of XP on the use of code
duplication (Chapter 3).

Beck presents a model of software development from the perspective of a system
of control variables. In this model, there are four variables in software develop-
ment: cost, time, quality and scope. The way the software development game
is played in this model is that external forces (customers, managers) get to pick
the values of any three of the variables. The development team gets to pick the
resultant value of the fourth variable.

There is a strange relationship between internal and external quality. Exter-
nal quality is quality as measured by the customer. Internal quality is quality
as measured by the programmers. Temporarily sacrificing internal quality to
reduce time to market in hopes that external quality won’t suffer too much is a
tempting short-term play. And you can often get away with making a mess for
a matter of weeks or months. Eventually, though, internal quality problems will
catch up with you and make your software prohibitively expensive to maintain,
or unable to reach a competitive level of external quality.

CHAPTER 2. FUNDAMENTS 24

2.5 What is Refactoring?

Definition 2.2 (Refactoring) The process of changing a software system in
such a way that it does not alter the external behavior of the code yet improves
its internal structure is called refactoring.

It is a disciplined way to clean up code that minimizes the chances of introducing
bugs. In essence when you refactor you are improving the design of the code
after it has been written[FBB*99].

Definition 2.3 (Refactoring) A change made to the internal structure of
software to make it easier to understand and cheaper to modify without changing
its observable behavior is called refactoring

2.5.1 Solutions based on refactorings

Kent Beck and Martin Fowler define some signs of problems that can be ad-
dressed by refactoring the code, which they call "bad smells in code”. The first
mentioned symptom is code duplication, described by them as ”"number one in
the stink parade”. If you see the same code structure in more than one place,
you can be sure that your program will be better if you find a way to unify
them.

Code duplication

The simplest duplicated code problem is when you have the same expression in
two methods of the same class. Then all you have to do is Extract Method and
invoke the code from both places.

Another common duplication problem is when you have the same expression
in two sibling subclasses. You can eliminate this duplication by using Eztract
Method in both classes then Pull Up Field. If the code is similar but not the
same, you need to use FExtract Method to separate the similar bits from the
different bits. You may then find you can use Form Template Method. If the
methods do the same thing with a different algorithm, you can choose the clearer
of the two algorithms and use Substitute Algorithm.

If you have duplicated code in two unrelated classes, consider using Ezxtract
Class in one class and then use the new component in the other. Another pos-
sibility is that the method really belongs only in one of the classes and should
be invoked by the other class or that the method belongs in a third class that
should be referred to by both of the original classes. You have to decide where
the method makes sense and ensure it is there and nowhere else.

CHAPTER 2. FUNDAMENTS 25

Switch Statements

One of the most obvious symptoms of object-oriented code is its comparative
lack of switch (or case) statements. The problem with switch statements is
essentially that of duplication. Often you find the same switch statement
scattered about a program in different places. If you add a new clause to the
switch, you have to find all these switch, statements and change them. The
object-oriented notion of polymorphism gives you an elegant way to deal with
this problem.

Most times you see a switch statement you should consider polymorphism. The
issue is where the polymorphism should occur. Often the switch statement
switches on a type code. You want the method or class that hosts the type
code value. So use Fxtract Method to extract the switch statement and then
Mowve Method to get it onto the class where the polymorphism is needed. At
that point you have to decide whether to Replace Type Code with Subclasses
or Replace Type Code with State/Strategy. When you have set up the inheri-
tance structure, you can use Replace Conditional with Polymorphism. If you
only have a few cases that affect a single method, and you don’t expect them
to change, then polymorphism is overkill. In this case Replace Parameter with
Explicit Methods is a good option. If one of your conditional cases is a null, try
Introduce Null Object.

Parallel Inheritance Hierarchies

Parallel inheritance hierarchies is really a special case of shotgun surgery. In
this case, every time you make a subclass of one class, you also have to make
a subclass of another. You can recognize this smell because the prefixes of the
class names in one hierarchy are the same as the prefixes in another hierarchy.

The general strategy for eliminating the duplication is to make sure that in-
stances of one hierarchy refer to instances of the other. If you use Move Method
and Move Field, the hierarchy on the referring class disappears.

2.5.2 Refactorings explained

This section will make clear some of the refactorings proposed in the three cases
that have to do with code duplication.

1. Parameterize Method
Several methods do similar things but with different values contained in
the method body. Create one method that uses a parameter for the dif-
ferent values.
Motivation: You may see a couple of methods that do similar things but
vary depending on a few values. In this case you can simplify matters

CHAPTER 2. FUNDAMENTS 26

by replacing the separate methods with a single method that handles the
variations by parameters. Such a change removes duplicate code and in-
creases flexibility, because you can deal with other variations by adding
parameters.

2. Pull Up Field
Two subclasses have the same field. Move the field to the superclass.
Motivation: If subclasses are developed independently, or combined through
refactoring, you often find that they duplicate features. In particular, cer-
tain fields can be duplicates. Such fields sometimes have similar names
but not always. The only way to determine what is going on is to look
at the fields and see how they are used by other methods. If they are
being used in a similar way, you can generalize them. Doing this reduces
duplication in two ways. It removes the duplicate data declaration and
allows you to move from the subclasses to the superclass behavior that
uses the field.

3. Pull Up Method

You have methods with identical results on subclasses. Move them to the
superclass.

Motivation: Eliminating duplicate behavior is important. Although two
duplicate methods work fine as they are, they are nothing more than a
breeding ground for bugs in the future. Whenever there is duplication,
you face the risk that an alteration to one will not be made to the other.
Usually it is difficult to find the duplicates. The easiest case of using
Pull Up Method occurs when the methods have the same body, implying
there’s been a copy and paste. Of course it’s not always as obvious as
that. You could just do the refactoring and see if the tests croak, but
that puts a lot of reliance on your tests. I usually find it valuable to look
for the differences; often they show up behavior that I forgot to test for.
Often Pull Up Method comes after other steps. You see two methods in
different classes that can be parameterized in such a way that they end
up as essentially the same method. In that case the smallest step is to
parameterize each method separately and then generalize them. Do it in
one go if you feel confident enough.

4. Extract Superclass

You have two classes with similar features. Create a superclass and move
the common features to the superclass.

Motivation: Duplicate code is one of the principal bad things in systems.
If you say things in multiple places, then when it comes time to change
what you say, you have more things to change than you should. One form
of duplicate code is two classes that do similar things in the same way or
similar things in different ways. Objects provide a built-in mechanism to
simplify this situation with inheritance. However, you often don’t notice
the commonalities until you have created some classes, in which case you
need to create the inheritance structure later. An alternative is Extract

CHAPTER 2. FUNDAMENTS 27

Class. The choice is essentially between inheritance and delegation. In-
heritance is the simpler choice if the two classes share interface as well
as behavior. If you make the wrong choice, you can always use Replace
Inheritance with Delegation later.

5. Form Template Method
You have two methods in subclasses that perform similar steps in the
same order, yet the steps are different. Get the steps into methods with
the same signature, so that the original methods become the same. Then
you can pull them up.
Motivation: Inheritance is a powerful tool for eliminating duplicate be-
havior. Whenever we see two similar methods in a subclass, we want to
bring them together in a superclass. But what if they are not exactly the
same? What do we do then? We still need to eliminate all the duplication
we can but keep the essential differences. A common case is two methods
that seem to carry out broadly similar steps in the same sequence, but the
steps are not the same. In this case we can move the sequence to the su-
perclass and allow polymorphism to play its role in ensuring the different
steps do their things differently. This kind of method is called a template
method [Gang of Four].

Chapter 3

State of the Art

The problem of detecting clones in systems is an established software engineering
problem known to occur in many contexts, including during pattern detection,
software refactoring and perfective maintenance, system quality evaluation, and
class library reengineering.

Software clones have been a focus of research for at least a decade (c.f. Baker’s
1992 paper [Bak92]), and dozens of papers on the topic have appeared. Cur-
rent levels of interest in the topic appear heightened: concerning both the phe-
nomenon of software clones (how, when, and why they occur, etc.), and the
construction of clone detection tools.

Clones have been considered potential problems for maintenance [JO93]. Many
automated and semi-automated techniques for detecting clones have been pro-
posed over the years (e.g., [Bak92], [MLM96], [BYM™98b]). Similar sorts of
problems and techniques occur also in other contexts such as memory com-
paction, efficient delta-based storage, and plagiarism and copyright infringement
detection (e.g., [Gri81]).

3.1 Pioneers in clones field

Early interest in this field has been showed in the early '90s. Ralph Johnson
has taken a parse-tree based approach [Joh91] to finding replicated code, but
at that time the exhaustive search used on parse trees to identify identical sub-
trees or subtrees related by change of parameter was found to be unsuccessful
because of time and space usage. Kenneth W. Church and Jonathan I. Helf-
man published a paper [CH93] that presented a tool called Dotplot, which they
described as a program for exploring self-similarity in millions of lines of text
and code. Programs aimed at detecting student plagiarism have typically used
statistical comparisons of style characteristics such as the use of operators, use

28

CHAPTER 3. STATE OF THE ART 29

of special symbols, frequency of occurrences of references to variables, or the
order in which procedures are referenced [Jan88]. Brenda S. Baker, in her '92
paper [Bak92] presented Dup, A Program for Identifying Duplicated Code.

3.2 Actual concerns on software clones

The last years, researchers form all over the world spent increasing effort in the
field of software clone (or duplicated code) detection.

3.2.1 First International Workshop

In October 2002 the First International Workshop on Detection of Software
Clones took place in Montreal, Canada. It was held in conjunction with ICSM’2002
and the Workshop on Source Code Analysis and Manipulation (SCAM’2002).
The workshop’s concern was mainly to present the results of a tool comparison
experiment, lead between January and April 2002. There were 4 tools which
were presented in the published papers on this workshop ([BYM198a], [KKI02],
[Kri01] and [DRD99]) that were compared and the whole experiments, along
with the results was presented in another work [Bel02].

Evaluating the competition

Before presenting the results, we need to introduce a set of terms related to the
clone detection evaluation process.

1. Definition 3.1 (Reference) A reference is a clone in the given project,
that has a known type.

2. Definition 3.2 (Candidate) A candidate is a clone reported by a de-
tecting tool, to which the tool can assign a clone type.

3. Definition 3.3 (Recall) The ratio between the number of found real clones
covered by the clone candidates found by a tool and the total number of
clones in the system is called recall. It is a measure of how many of the
existent clones can a tool detect.

References(P,T)
References(P)

Recall(P,T) =

4. Definition 3.4 (Precision) The precision of a clone detecting tool is
the ratio between the number of clones detected by the tool and the clone
candidates. Precision is a measure of the number of clones that make

CHAPTER 3. STATE OF THE ART 30

sense found by the tool.

N References(P,T)
P PT)=
recision(P,T) Candidates(P,T)

Baxter et. al [BYM™98a] presented in the paper simple and practical meth-
ods for detecting exact and near miss clones over arbitrary program fragments
in program source code by using abstract syntax trees. He compares subtrees
searching for exact matches or similarity (near-exact). This approach is more
precise than the one based on comparing strings of characters, but on the other
hand is more language dependent (needs a parser for every programming lan-
guage) and is harder to scale up, because of the memory needed to store the
abstract syntax trees. It should also work slower because the processing time
needed to build those trees. As they stated, ...program scale is a problem for
any clone detection scheme. For our experiment, we were limited to 100,000 line
chunks in 600Mb RAM because of artificially large memory-based data structures
in our prototype DMS. By using standard parsing technology, their tool (called
CloneDR) detects clones in arbitrary language constructs, and computes macros
that allow removal of the clones without affecting the operation of the program.

Kamiya et. al presented a Multi-Linguistic Token-based Code Clone Detection
System for Large Scale Source Code called CCFinder [KKI02]. The paper pro-
poses a new clone detection technique, which consists of transformation of input
source text and token-by-token comparison. The underlying concepts for their
tool were:

e The tool should be industrial strength, and be applicable to a million-line
size system within affordable computation time and memory usage.

e A clone detection system should have ability to select clones or to report
only helpful information for user to examine clones, since large number of
clones is expected to be found in large software systems. In other words,
the code portions, such as short ones inside single lines and sequence of
numbers for table initialization, may be clones, but they would not be
useful for the users. A clone detection system that removes such clones
with heuristic knowledge improves effectiveness of clone analysis process.

e Renaming variables or editing pasted code after copy-and-paste makes a
slightly different pair of code portions. These code portions have to be
effectively detected.

e The language dependent parts of the tool should be limited to a small
size, and the tool has to be easily adaptable to many other languages.

The process of clone detection is done in 4 steps: a lexical analysis on the
code (where whitespace is eliminated), transformation of the resulting token se-
quence, match detection and formatting the resulting clones (mapping the token
positions into places in the correspondent files). Kamiya’s paper also describes

CHAPTER 3. STATE OF THE ART 31

some metrics for evaluating clone pairs and clone classes.

Krinke’s approach [Kri01] is based on fine-grained program dependence graphs
(PDGs) which represent the structure of a program and the data flow within it.
In these graphs, his tool called Duplix tries to identify similar subgraph struc-
tures which are stemming from duplicated code. Therefore he considers not
only the syntactic structure of programs but also the data flow within (as an
abstraction of the semantics). As a result, there is no tradeoff between precision
and recall.

The result of Rieger and Ducasse’s approach in [DRD99] is a visual tool called
Duploc which is written in Smalltalk and developed in the Software Compo-
sition Group at the University of Bern. Duploc is a lightweight, visual tool
that can generate a scatter-plot out of a set of files, and every mark on the
scatter-plot is a match between 2 lines of code. Clicking on a mark will open a
view of the 2 files involved with the implicated line of code highlighted. In their
paper, Rieger and Ducasse present some patterns (dot configurations) that often
come up, like exact copy, modified, delete or insert, which are the inspiration
behind the types of duplication chain identified in this thesis. Even the concept
of duplication chain is inspired by the scatter-plot visualizing. Unfortunately,
Duploc has some problems when dealing with bigger projects. Another fact is
that Duploc has to be used by a trained person; identifying some of the duplica-
tions is not very easy and is directly influenced by some approach-related factors
like: the current zoom level, the currently displayed area of the scatter-plot, the
degree of attention or fatigue of the user (some of the duplications are easy to
overlook).

Experiment’s Results

Bellon ran these tools on a set of software projects and analyzed the way the
tools dealt with every project (he also analyzed Baker’s DUP [Bak95] and
Merlo’s CLAN [LPM197]). The results were discussed in his paper [Bel02].

He divided the duplications into 3 categories:
e Exact copy
e Copy affected by renaming (of variables, methods)
e Modified copy (more than renaming, inserted code, deleted code)

The case studies subjects were 8 projects, 4 written in Java and 4 in C and
C++, with sizes ranging from 11 SLOC (number of lines of code ,except null or
comment lines) to 350 SLOC.

Some of the tools were configurable: number of processors (Baxter), clone’s
length (Baker, Baxter, Kamyia, Krinke, Merlo), percentage of similarity (Bax-
ter), number of variable parameters of a Type-2 clone (renamed elements),

CHAPTER 3. STATE OF THE ART 32

metrics used (Merlo), some C++ specific parameters (eliminating namespace
information, template parameters, etc.).

Some of the tools encountered problems with part of the study cases. Krinke’s
Duplix could not analyze the weltab project, for it had more than one main()
function and he also could not analyze the postgresql, and for the cook and snns
projects, for some unknown reason the times for processing were unacceptable
high. Rieger’s Duploc had problems in analyzing the 2 big systems: postgresql
and j2sdk1.4.0-javaz-swing, because it consumed too much memory and/or time.

After analyzing the results, Bellon could not name a winner, he could just
admit that every method has its advantages and disadvantages. He divided the
tools in two categories: the ones with high recall but lower precision and the
ones with a lower recall but with higher precision. Baxter and Merlo belong to
the ones with higher precision while Baker, Kamiya and Rieger got more recall,
with loss of precision. Krinke managed high recall only with clones of type-3.

Bakers’s DUP, with its token-based approach found a lot of clone candidates,
was a good choice to search for exact copies (not for parameterized ones). It
also proved to be less precise in delimiting the clones (often the start and end
of clones were inexactly reported).

Baxter’s CloneDR reported fewer candidates, but the most were qualitative
(high precision). His tool was better at finding exact copies than the parame-
terized ones (with renamed elements). Type-3 clones were rarely found. Some
of the type-1 clones (exact) were wrongly reported as type-2.

Kamiya’s CCFinder uses also a token-based approach with some other trans-
formations. Similarly to CloneDr, it found many candidates with a big ratio
of not-qualitative clones. Type-1 clones were better recognized than type-2. It
managed though to detect some type-3 clones. But the main problem is that it
cannot recognize the candidates types at all.

Krinke’s Duplix is not appropriate for Java projects and cannot analyze big
Systems. Its precision is low and the recall proved to be good only for type-3
clones. Krinke claims this would be the only type his tool could find.

Merlo’s CLAN with the metrics-based approach showed some good precision,
but with the cost of low recall. It proved to find all three types of clones. The
power of the tool is that it can detect complete copied function and methods,
so the delimitations of the candidates are, most of the time, precise.

Rieger chose for Duploc a line-based approach and pattern recognition. The
tool seemed to have problems with big projects, which it could not analyze.
Duploc found many candidates, but the percentage of real clones low enough
(high recall and low precision). The tool does not divide the candidates into

CHAPTER 3. STATE OF THE ART 33

types.

As a conclusion of that experiment was stated that there is no evident win-
ner and there is no optimal solution to the clones detecting issue. Depending
on the goal of the analysis is one tool or the other the appropriate tool.

3.2.2 Second International Workshop

The 2nd International Workshop On Detection Of Software Clones (IWDSC’2003)
was held in conjunction with WCRE’2003 in Victoria, British Columbia, Canada,
in November 2003. The aim of this half-day workshop was to bring together re-
searchers within the field of clone detection to critically assess the current state
of research, and to establish new directions and partnerships for research. Var-
ious techniques have been proposed for automatically and semi-automatically
detecting clones and refactoring them.

The papers presented with this occasion have discussed various issues around
the clone problem. Some authors tried to characterize why, how and when clones
occur in industrial software systems [KG03a|, for they considered that for this
issue there are only a few empirical studies.

1. Merlo et. al emphasized on the need of a substantial research effort to de-
fine new similarity measures and new approaches aiming at reducing the
computational cost, while, at the same time, fully considering the substan-
tial individuality of objects together with their properties [EMO3].

2. Eric Nickell and Tan Smith [NS03] tried to study the effect of XP (eXtreme
Programming) on the use of code duplication. They ran a near-clone de-
tector over software that has been developed while making heavy, light, or
no use of extreme programming (XP) practices. The results of their study
was that the XP projects produced significantly lower scores on cloning
than either the non-XP or semi-XP projects, and the project with the low-
est score was written by the team with the longest experience and highest
commitment to XP. The semi-XP and non-XP projects produced a wide
range of score. There is evidence that the XP projects gain some of their
advantage in lower scores in part because XP developers tend to produce
smaller methods. With these intermediate results in mind, they further
analyzed the two projects that produced the lowest and highest scores.

Nearly all (95%) of the detections for donquixote (the non-XP project
with the highest rate of clones) were typical near-clones: someone has done
cut-and-paste with minimal changes, for methods up to 150 lines, while
ardor (the full-XP developed project with the lowest score) had 91% of its

CHAPTER 3. STATE OF THE ART 34

duplications in the test code. The conclusion was that as they expected,
XP-developed software is more cloneresistant than software developed in
a more traditional manner.

3. Kienle et. al moved the discussion of software clones in the Web sites
domain, with emphasis on the issued of generated code. In order to be of
use to a software maintainer, the clones detected by a tool should provide
meaningful information. However, generated code can diminish the useful-
ness of clone detection significantly because generated ”clones” are reported
that are of no interest to the maintainer [KHAMO3|. Clone detection tech-
niques have been developed for procedural as well as object-oriented soft-
ware. More recently, this work has been expanded to include Web sites.
Web sites can contain clones in HTML, scripts such as JavaScript and
Perl, XSLT, XML, DTD, XSchema, etc.

Automatic detection of duplicated code can be a useful aid for software
maintenance and reverse engineering. For example, the detection of clus-
ters of similarly structured HTML pages is a good starting point to refactor
a Web site to a design that separates content and navigational structure.
However, to be effective, the detected clones have to be sufficiently precise
and meaningful in the eyes of the person inspecting the proposed clones. In
this context, a particular problem arises for software that is partly hand-
written and partly generated automatically. Software systems that consist
of generated components tend to generate highly regular-sometimes even
identical-pieces of code.

4. Walenstein and Lakhotia proposed some ideas for information retrieval
meant to improve the evaluation of clone detectors [WLO03]. Current eval-
uation techniques based on simple performance measures borrowed from
information retrieval (IR) research could be enriched with additional IR
evaluation measures.

By now, the evaluation of clone detectors has been made mainly in terms
of recall (the ratio between the number of clones that a tool can find and
the total number of clones in the project) and precision (the ratio between
the number of real clones found by a tool and the total number of clones
candidates it found). Perfect recall, in this context, means that every
clone is found, while perfect precision means that there is no false clone
reported. Effectively there is but a single query being evaluated, namely:
"find all clones”. Normally the result is in the form of a simple set of re-
sults. That is, the order of the clone candidates is considered unimportant.
This basic evaluation template has been followed by several researchers,
and precision and recall values have become the de facto basis for empir-
ical evaluation of automated clone detecting systems. Although this has
proven to be a useful tactic, it limits what can be said about the results
and how they may be compared. The authors feel that it is worthwhile to
expand on these evaluation techniques, and that exploring other IR-based

CHAPTER 3. STATE OF THE ART 35

measures techniques is a good first step. IR has developed an arsenal, and
from examining them several useful directions for CD evaluation might be
derived.

The authors propose some other measures like fallout (the fraction of false-
positive results) and even composite measures for the cases where a tool
has higher recall and lower precision than other tool. Then a composite
measure like the ratio of precision to recall, or precision to fallout would
probably make the difference.

Another way of performing the comparison is by so called precision/ recall
curves, which can show how a detector responds to changes in its tunable
parameters (only clone detectors that can be tuned up by means of search-
ing parameters). For instance, how does a detector’s precision differ from
another detector’s precision when the recall is set to 80%? 50%? 30%?

One vigorous area of research in IR has been the investigation of ranked
query result sets. Anyone using WWW search tools knows about ranked
results: the most interesting results are presented first. Many existing
clone detecting tools are easily modified so that they generate ranked out-
puts instead of amorphous result sets: merely rank the clone candidates.
The ranking generally needs to reflect the user’s goals.

3.3 More tools

DOTPLOT [Hel95] is a tool for displaying large scatter-plots, used to compare
source code, but also filenames and literary texts.

DATRIX [MLM96] a tool that finds similar functions by comparing vectors
of source metrics.

SimScan is a tool dedicated to finding duplications in Java. It is based on
ANTLR, a tool for building parsers. It can be parameterized by: volume, sim-

ilarity, speed/quality and can save reports. It is also provided as a plugin for
IDEA.

SimianUl is a plugin for Eclipse that finds only exact duplications. It is not very
flexible. By double-clicking on a reported duplication, you can jump straight to
the relevant source files, with the duplicated regions highlighted.

Dupman is a plugin for Eclipse. It is hard to configure, it offers few details
about the results (a degree of similarity).

One can use Unix’s diff program to show differences between two files, or each
corresponding file in two directories. diff outputs differences between files line

CHAPTER 3. STATE OF THE ART 36

by line in any of several formats, selectable by command line options. It has
several options on ignoring white spaces, some options dedicated to C language
source code analysis, input file filtering.

3.4 Success of a clone detector

After analyzing most of the existent tool, we made a list of attributes that we
would like to see with any duplicate detection tool.

1.

Scalability is a very important factor in the industrial context. The tools
should be able scale up to large (hundreds of K LOC) and even very large
software systems. The assistance such a tool offers is essential for the
engineer that analyzes legacy systems, because such an exhaustive search
on a huge system is impossible to do by hand.

Another important issue is the speed or the processor time for analyzing
software systems. Often a software consultant gets mostly a few days to
pronounce itself on the quality of a given system. If the clone detection
tools cannot provide results in an acceptable amount of time, it is useless.

The memory issue is not one that we could overlook: dealing with huge
systems (up to millions of LOC) could cause some problems if the tools
do not manage the memory in an efficient way.

In order to get a language independent clone detector, the parts of
the tool that are language dependent should be localized and reduced
to a minimum. This way, the tool can be applied to any programming
language, so it remains open for future languages

A useful feature of the tool is to be able to find so-called parameterized
clones (Type 2 [Bel02]), because there is a habit of copying & pasting
code and then modifying it by only renaming some of the participating
elements (variables, methods, etc.).

The ideal tool in terms of recall and precision is a tool that provides results
with high recall and high precision. It seems that it is hard to obtain
both of them at the same time. The ones that have a high recall obtain it
with the price of lower precision and a higher precision belongs together
with lower recall.

The tool should not suffer of the splitted-duplicates symptom (a simple
modification in a duplicate caused a detection of two independent dupli-
cates, one before the modifications and another after them).

The detector should be able to categorize the duplicates into types, in
order to get a better comprehension of the system, of the programmers
that work on it, and of their copying habits.

CHAPTER 3. STATE OF THE ART 37

9. Some of the tools were not able to correctly delimit the duplications.
This is an important issue when it comes to validate the clones, because
the one that makes the validation wants to get directly to the affected
code, without searching it (the tool already did that!).

Chapter 4

The Approach

4.1 Algorithm’s Principles

The approach chosen for this tool is an enhanced scatter-plot approach.
The scatter-plot approach is not new to software research and it is based mainly
on:

1. bringing the code to a brute state (non-indented, comments off)

2. building a matrix that will store the results of matching between the lines
of code

3. populating it, by marking every match
4. presenting it to the specialist, for further visual studying

The enhancement we propose is to try to unite copied sequence of code that are
close enough to each other and merging them into a cluster of code duplication.
The tool will report a list of clusters (chains).

When introducing code clones, programmers often change white spacing (blanks,
tabs, newlines) and comments, which will disable recognition based purely on
strings. In order to combat this problem, the presented tool transforms the code
lines by ”cleaning” the code.

Clone detection is a process in which the input is a list of source files (or method
bodies) and the output is a list of duplication chains. The entire process of our
string comparison clone detecting technique consists of the following steps:

1. Code cleaning
After reading the source code lines, the first thing to do is bringing the
code to a raw state, in order to avoid situations where identic lines which

are differently indented or having comments added are not reported as
duplicates. This preprocessing phase cleans the code, by:

38

CHAPTER 4. THE APPROACH 39

e striping the comments (optionally, only Java and C,C++)
e removing any whitespaces (including nice indentation)

e removing noise (specified in a file), i.e. lines of code containing only
a keyword (else) or some other syntactic element (an open or a closed
brace), which can be considered as less relevant to the duplication
issue. It would not make us very happy if the tool would report us a
duplication length of 5 LOC, which would consist of a closed braces
on every line.

2. Building the matrix

The lines of code the cleaning this phase (further referred to as relevant
lines) will be stored in the exact order they were read: all the relevant
lines of the first file, followed by the ones of the second file, and so on. The
next step consists of building a two-dimensional matrix NxN, where N is
the total number of relevant lines in the system. An element of the matrix
Element[i,j] will store the result of matching the relevant lines i and j.
This way, every line will be compared with every other line in the system
(exhaustive approach). Only the hits of the matching will be marked in
the matrix (Fig. 4.1).

=
oo EH EJ % <
22 2 E £ =
So 2o 2 o Z
L D [<] (5] [¢B) [«B)
e . — c.c
e —— AREA
lineO, file0 @Fl [] (] OF
linel,fileO | @ (] [
[] HEE BN INTEREST
IiPeNg,;i:eO ‘[.‘ o [._
ine0,filel | 1@
e ﬂ o, ber of fil
lineNy,filel l o gﬁ - numper ot tiles
® q» () _
. o @ .ﬂ‘ Ni - number of lines
lineg, fileM %—.. %~ to analyze in file i
lineNpm, fileM e e (i=1.M)

Figure 4.1: Building the matrix

The main diagonal is completely marked, each of its elements is actually
the result of matching a line of code with itself. There is an obvious sym-
metry towards the main diagonal (the marks above it are the mirrored
image of the marks below it).

Definition 4.1 (Area of interest) Based on these reasons, I will de-
fine the zone above the main diagonal (excluding the diagonal itself) as

CHAPTER 4. THE APPROACH 40

the area of interest for the duplication issue, the rest of the matriz con-
taining only redundant information.

Due to the huge amount of memory needed to store the matrix when deal-
ing with middle size to big software systems (a system with 370.000 lines of
relevant code involves a matrix with 137 billions elements), an ingenious
storing solution was needed. On one hand, it should offer good perfor-
mance for searching and extracting operations and on the other hand this
data structure should efficiently manage the memory in order to store the
sparse matrix. Based on this reasoning, the 2-dimensional Array (Matrix)
was replaced by a data structure with quick access to information and also
very economical: a list (Java’s ArrayList) which associates every line of
code with a map (Java’s HashMap) containing key - value pairs (key is
the line index and value is the type of mark). The set of keys for such
a HashMap puts together the indexes of all the lines that match the line
associated to that specific HashMap.

Even with this new solution, by increasing the size of the analyzed code
(5MB), the memory proved to be insufficient. Then again, a new solution
had to optimize the performance and scalability. And because after ex-
tracting the duplication data (chains), the content of the matrix was no
more useful, I divided the matrix into areas, each of these zones repre-
senting the intersection between the lines of code belonging to 2 files (Fig.

4.2).
filel file2 file3
Y e Ve PN

filel Comparisons:
[filel vs. filel
_ filel vs. file2
file2 { M filel vs. file3
file2 vs. file2
file3 file2 vs. file3
file3 vs. file3

Figure 4.2: Area division in the matrix

Definition 4.2 A slice is the portion of the matriz containing the results

CHAPTER 4. THE APPROACH 41

of the comparison between the lines of code of two files: one spreading
on horizontal direction and the other on vertical (the two files are not
necessarily distinct files).

This way, every area will be passed 2 times: one for marking the matches
between each 2 lines of code and a second one for building the chains of
duplicated code, based on the marks made in the first passage. Then,
the memory occupied by that area is released and the algorithm continues
with the next area in the matrix. By that, I am assured that the memory
hosts at most one area of the matrix (the current area).

3. Tracking the duplication chains

For simplity reasons, the algorithm will be described in pseudo-code:

for (xevery entity E1 (file) in the project)
for (*every entity E2 that has not been fully processed)
*set currentArea as the area corresponding to the
intersection of the lines of code belonging to El1 and E2
completeScatterPlot (currentArea) ;
findDuplicationChains (currentArea);
*add traced duplications to the list of clomes;
*free the memory occupied by currentArea;
end
end

The procedure called completeScatterPlot(area) is best described by the
next pseudo-code description of the algorithm:

for (*every line L in the area)
for (*every column C in the area, starting with column L+1)
if (code(L) = code(C))
*mark element[L,C] with the value unused;
end
end

At the beginning of the completeScatterPlot procedure, all the elements
in the specified area are unmarked (null value). Then, every line of the
matrix is compared to every column of the matrix, with respect to the
area of interest (only cells above the main diagonal). Every cell found as
a match between the lines of code that intersect in that specific point is
marked with the value unused (false), as a sign that it has not been part
of a duplication cell.

The procedure findDuplicationChains(area) can be described as follows:

CHAPTER 4. THE APPROACH 42

for (*every line L in the area)
for (*every element Elem[L,C] marked as unused)

*create a list of coordinates;

*add (L,C) coordinates to the list of coordinates;

while *there is a next coordinate available

if (*Elem[L+1,C+1] is marked)

*add Elem[L+1,C+1] to the list of coordinates;
smark Elem[L+1,C+1] as used;

end
else
if (*size of current exact chunk > minExactChunk)
*search for a marked element in Elem[L+1,C+1]’s
proximity, with respect to maxLineBias;
end

if (*the duplication chain that could be built based
on the list of coordinates is longer than minLength)
*add the clone to the duplications list
end
end

Due to the structure of the VirtualMatriz, in this phase, the program has
direct access to the marked cells (through an Iterator). This is an im-
provement by almost 150% of the program’s speed performance, because
there is no need to search every element on a line (we get a set of marked
elements).

Once we found an unmarked cell, that is a potential start of a dupli-
cation chain, we start the tracing. The first place to look for a marked cell
is the next cell on the diagonal direction (this searches for exact chunks).
If there is a match, that cell is added to the chain and the algorithm
continues the same way and then the element is marked as used. This
way, we avoid detecting duplication chains that are overlapped or even
contained ones. Else, it starts searching in the proximity of that cell (fig.
4.3), in order to find a continuation of the chain. The exact chunk is over,
but there may be another exact chunk close enough (the distance limit
between them is maxLineBias) to be linked together. Also the sizes of the
exact chunks that compose the chain have to be at least minExactChunk.

The chain is considered closed when the line bias reaches the maxLineBias
value without succeeding in extending the chain. The algorithm contin-
ues with the next unused mark on the current row of the matrix, until the
end of the row. A concrete example of building a chain is shown in fig. 4.4.

CHAPTER 4. THE APPROACH 43

1
o — " —

i-1 @ chain component
i | @

—« TP @ line match

i+1 2 lineBias = 0

i ?

::g I B lineBias=1
' ? lineBias =2

maxLineBias=2

Figure 4.3: Duplication chain expansion

E)
5§
- Ew L8
8|88 2o 8es5ceEs
o /@
be _Qf’i
or, maybe E2 -
not
go P T Q \——’q_ E"
e A _[F
that B3| - Q'_\ N1
is 1 @]
(isn't ith?) 12 I.
the (-
question =D ’:ﬁf

duplication type: COMPOSED
duplication structure: E2.M1.E3.12.E2.D1.E2

Figure 4.4: Duplication chain example

4.2 System architecture

The architecture of the clone detecting engine is described in the UML class
diagram (fig. 4.5). In the middle of the diagram stands the Processor class,

44

CHAPTER 4. THE APPROACH

()anisinoaysa|iH1ohy,

lojesayun-enel : (ui : moi)iojelally,

Jouea|DSsIusaWwWo)

(ues|ooyioadsy,

poylsN 9[1492IN0S =
7 7 * T jopeayhiopang
v v S
()apoDiahiy,
T | Qowenioby |* T
U : auIpuSde e —
it suruiBag A Anua Anug Amnus sulixuren
wawbeliq4apo) - *
[4
apo)aedldnp
% ‘apoDaoualajal sannus 1Sl
T 1 I
x T T 1| (Osereondngyosessy, T T
i yibuapaidoode
W pbusTeo e gy | STIUOMRINANG T o0 dnp 105509019 sourpaews MESLERIEEY
Bums : ainreubisdm ’ I T
uoireoldn@ F“““““
2 XUTe|\|002 7
adfy 7
' |
7 7 Jauea|Dasedsalym laues|DasIoN
|
adA uonealdng 7 7 - Mv T
ﬁ vV V¥

(bu1 2 BuUpuUs I : BUITLEIS)SAUI TSl 4,
(Ues|o0g : aN[eA ‘Ul 1 UWN|OD ‘JUI : MO1)ISS,
ues|00g : (JuI 1 UWNjOD ‘Ul : MO1)1804,

XLITRN[eNnUIA

(Juesjoy,

T

JloyeiosagBuiues|d

1Xau

1]

Figure 4.5: System architecture (UML)

CHAPTER 4. THE APPROACH 45

that is the main character behind the duplication chains detection process. A
Processor object works with FEntity objects as input, in order to be dependent
on an abstract entity (in conformance to Dependency Inversion Principle). The
classes that specialize Entity are SourceFile, which is the input for the stand-
alone version of DuDe and Method, which is the input provided by the Insider
reengineering platform, in DuDe’s integrated version.

The expected output of the detection process is a DuplicationList object, that
contains all of the found duplication chains (class Duplication).

In the process of detection, some more classes play some roles. The VirtualMa-
triz is the element that brings the efficient management of memory and makes
possible the dividing of the matrix into areas. When a matrix zone is finished,
the area is cleaned from the memory, by calling its freeLines(int row) method.
The internal structure of the VirtualMatriz can provide an Iterator for every
row (every row is a HashMap), which makes the chain building way more rapid,
after having the markings in the scatter-plot.

The CleaningDecorator is a combination of the Decorator and Chain of Re-
sponsibility design patterns [GHJV95], that implements a class that cleans
somehow the code. If we will need another cleaner, we have to create a new
class that extends the CleaningDecorator abstract class, and we can add it in
the ”chain” of cleaners. This way, it is possible to dynamically combine differ-
ent cleaners. If the commentCleaner option is ON, than the processor uses a
chain of cleaners made of: a comments cleaner, a whitespace cleaner and a noise
cleaner. The sequence diagram (fig.4.6) describes the code cleaning process in
terms of time.

The Processor object works with a CleaningDecorator, which is an abstract
class, this way the heuristic: program to an interface, not to a implementa-
tion is fully respected. If commentCleaning is also wanted, the cleaner will be
actually a chain of cleaners in the following order: CommentCleaner, Whites-
paceCleaner and NoiseCleaner. When the Processor calls the cleaner’s clean()
method, the message goes to the first cleaner in the chain. The Comment-
Cleaner cleans the comments off (by calling it’s own specificClean() method)
and then calls the clean() method of the next cleaner in the chain (he does not
need to know what type of cleaner is next, thanks to polymorphism). The next
cleaner, a WhitespaceCleaner cleans the whitespaces and then further delegates
the next cleaner to clean the code by calling it’s clean method. The last cleaner
(NoiseCleaner) cleans the lines considered noise (which can be specified in a file)
and then returns, because it is the last in the chain (it does not have a next
cleaner). Step-by-step, the clean code return to the Processor object.

In order to better manage the change of information between the Processor
and the graphical user interface (not present on the UML class diagram), I used

CHAPTER 4. THE APPROACH

46

Processor

CommentCleaner WhitespacesCleaner NoiseCleaner

‘ 1: cleaner.clean() ‘

9: return

Pa—

2: specificClean

3: next.clean()

8: return

7

|
6: specificClean()
_ Trewm <
|
|
\

4: specificClean()
P—

5: next.clean()

v

Figure 4.6: Code cleaning process (sequence diagram)

the Observer design pattern (presented in the Chapter 2).

4.3 Specific terms

A Chain of code duplication object is composed of:

e a pair of fragments of code (CodeFragment class in the 4.5 class diagram)
that store the localization information. Each of these CodeFragment ob-
jects are described by:

— a reference to the entity involved (source-file or method)

— the index of the first line of the duplicate

— the index of the last line in the duplicate

e the duplicate’s type (basic types: exact, insert, delete and modified, plus
a composed type)

e its signature, an original concept that captures the chain’s configuration
the way it would look on the scatter-plot representation. It contains in-

CHAPTER 4. THE APPROACH 47

formation on both files and the way the code sequences evolved after the
duplicating act took place.

e the copied length, which is often smaller than the length covered within
the files, that is due to the cleaning process. The code in files still contains
the white spaces (indentation), comments and some other ”noise”

Definition 4.3 (Exact Chunk) An exact chunk is a part of a duplication
chain made of the mazimum (greedy approach) number of consecutive copied
lines of code. In other words it is the length of a copied code sequence. In a
scatter-plot representation, an exact chunk is a continuous diagonal configura-
tion of dots. The exact chunks are the raw material out of which the duplications
chains are made of. In terms of exact chunks, a duplication chain is a set of
exact chunks, with every two consecutive chunks linked by a number of modified
(or inserted/deleted) lines (fig. 4.7).

E2.M1.E3.12.E2.D1.E2

Exact Chunk Size=2

Exact Chunk Size=3 ®

Figure 4.7: Parametrul ExactChunk

The term is directly related to the minExactChunk parameter, which filters
the results, by finding only the duplication chains that contain exact chunks
whose sizes are larger than the minExactChunk parameter. This parameter

CHAPTER 4. THE APPROACH 48

was introduced out of the need to avoid situation that came up on the early
versions of DuDe, like: duplication chains made of two exact chunks size 2 (or
even 1), linked by a number of 4 lines of code. In this case the solution is to
consider it as two distinct chains of type EXACT. The exact chunks were in
this case too far away from each other reported to their sizes.

Definition 4.4 (Line Bias) The line bias is the number of lines of code
(LOC) that link two consecutive exact chunks within a chain (Fig. 4.8). In
other words, it is the distance covered in the search for a next exact chunk be-
fore giving up. This parameter was introduced because we needed to consider a
duplication chain in the case that a code fragment was copied and partially mod-
ified still as a single duplication chain and not as 2 shorter clones: one before
and one after the modified lines.

E2.M1.E3.12.E2.D1.E2

lineBias=1

lineBias=2 o

Figure 4.8: Parametrul LineBias

Its corresponding search parameter maxLineBias is the one that offers the flex-
ibility of the searching process. By setting maxLineBias to 0, the tool will find
only duplication of type EXACT.

The duplication’s Type can be one of the following types:

CHAPTER 4. THE APPROACH 49

1. EXACT, which represents the class of a duplication chain that is an iden-
tical duplicated code sequence, which has not suffered any modifications
(fig. 4.9):

type: EXACT

structure: E5

Figure 4.9: Type EXACT

2. MODIFIED, contains identical code sequence interrupted by modified
lines of code (fig. 4.13):

Qr. type: MODIFIED
structure: E2.M2.E2.M1.E2

%

‘e

Figure 4.10: Type MODIFIED

3. INSERT, when the exact chunks within the duplicate chain are bound
only by lines of code inserted in the second file (fig. 4.11):

CHAPTER 4. THE APPROACH 50

type: INSERT

structure: E3.11.E2.11.E2

Figure 4.11: Type INSERT

4. DELETE, when its exact chunks are linked only by lines of code that don’t
come up in the second file, who were deleted from the first file (fig. 4.12):

DELETE
(E2.D2.E3.D1.E2)

Figure 4.12: Type DELETE

CHAPTER 4. THE APPROACH 51

5. COMPOSED, which is a combination of the other types (fig. ??):

COMPOSED

_Qh (E2.M1.E2.D1.E2.I11.E2)
®
)

%

%

Figure 4.13: Type COMPOSED

Definition 4.5 (Duplication Signature) The signature of a duplicate is
the structure (dot configuration) of the chain the way we would see it if we
represented the scatter-plot.

From a duplication signature, one can deduce the type and the length.

A duplication’s length stands for the number of relevant lines of code that
compose the chain and it is calculated as the minimum between the length on
the horizontal direction (length of the chain in the first entity) and the length
on the vertical direction (length of the chain in the second entity). This two
lengths can vary if the chain’s signature contains deleted or inserted portions of
code (Fig. 4.14).

CHAPTER 4. THE APPROACH

Q|_.

"e

Q'_.

10

.

L2 (length in file2) = 13

L1 (length in filel)

Length = min(L1,L2)
[Lenght] = LOC

Example:

Length = min(10,13)
=10LOC

Figure 4.14: The length of a duplication chain

52

Chapter 5

Evaluation of the tool

5.1 Features

The graphical user interface (fig. 5.1) offers a simple, yet powerful access
to the duplication chains detecting engine. The all-in-one-window integrated
workspace is composed of:

e control panel
e parameters panel
e results panel (a list of found chains)

e visualization panel, for visual analysis of the duplicated code involved in
a chain

e status bar

In order to analyze a project, first you have to set the starting path (current
directory) where the source files of the project are located. Then, you can mod-
ify the searching parameters and hit the Search button. The status bar contains
a progress bar, visible only during a search process.

After the searching is over, if any duplication chains were found, they will be
shown in a list of chains which can be sorted by any of: entity’s name, index to
the first or the last line of code in the chain, length, type etc.

The meanings of the different columns in the results table are:

e Reference File, Duplication File are the 2 files that share the duplicated
code

e startLine and endLine are the line indexes in the 2 files where the dupli-
cated code starts and ends

53

CHAPTER 5. EVALUATION OF THE TOOL

(a1

4

public AccessibleText gethoeessibleTexti) {
return getCurrenthccessibleContext).gethccessibleTexti);
public AccessibleValue gethecessibleValue() {
return getfurrenthccessibleContext().gethocessibleValue();
7/ MeocessibleCouponent methods
public Color getBackground() {
AccessibleContext ac = getCurrentAccessibleContexti):
if (ac instanceof AccessibleComponent) {
return {(AccessibleComponent) ac).getBackgroundi);
} else {
Component ¢ = getCurrentComponent();
if fo = mull) {
return c.getBackgrownd():

}

D

= iz m]E3
Contrals Parameters
O setpsth Find duplicates | B Hen
[] s] =
([save resuns | [statistics | €9 avout -
(%] Ignore Comments
Results
Duplicates found
Reference File Start | End Duplication File Start | End | Copied length — | Length infile Type Signature
JListjava 2364 Z3EBLTrEEjA¥A o 3463 3578 105 105 EXACT E106 -
JTable java 4320 4489JTree java 3463 3578 105 T1BERACT E105 1
JTree java 3463 3578tablelTableHeader java a30 934 105 105 EXACT E105
JDialog.java 405 T20JFrame java 322 639 a8 3B COMPOSED E4M2ET0I2.E12
JTree java 3637 3T051ablelTableHeader java 993 1051 58 FOERACT ES8
DebugGraphics.java 240 301 DebugGraphics java 422 483 96 62 MODIFIED E3M1.EG.M1.E3 MZEIMIEAM.. =
Duplicate viewer
JListjava JTreejava
PULLC AUUESTLULE I LBV LAV JE AL UESSIDLEIELEC LI]| |[77 hccessibleConponent methods ~
return getCurrenthccessibleContext().gethccessibleSelection () F

e
+ Get the background color of this obiect.
-
* Breturn the background color, if supported, of the object;
" otherwise, null
3
public Color getBackground{) {
AccessibleContext ac = getfurrenthccessibleContexti):
if (ac instanceof AccessibleComponent) {
retumn
3 oelse [
Component ¢ = getCurrentComponent|):
if (o != muall) §

((AccessibleCouponent) ac).getBackground();

A
r- return c.getBackground(); r
y else { B } else { =
return mill; } } } d retorn omll: 1L hd
4 L4 e 4 L4 Y) »

Found 280 duplication chains in 485

Figure 5.1: DuDe’s Graphical User Interface

Copied length is the length of the duplication chain

Length in file is the number of duplicated lines of code between the start

line and the end line of the duplication. it is usually greater than the
Copied length, because it may contain the noise and blank lines that were
rejected in the code cleaning phase, just before the analysis

Type of the duplication chain is the chain’s type (previously discussed)

structure is a chain of <symbol><size> elements (separated by ’.”), where

size represents the number of lines and the symbols can be: E (exact), M

(modified), T (insert), D (delete).

If you would like to save the results for subsequent analysis, you can ask DuDe
to generate a report (the Save Results button), which stores the list of results
in a specified file, with respect to the current sorting of the list.

I order to validate the duplication chains or to examine the results in a vi-
sual manner, a mouse click on any of the items in the results list will display the
contents of the 2 files involved in that duplication in the Duplicate Viewer
panel, with the replicated code highlighted in yellow.

CHAPTER 5. EVALUATION OF THE TOOL 55

A useful feature offered by the tool is the possibility to consult a set of sta-
tistical data (Fig. 5.2) gathered during the last searching operation:

number of analyzed entities,

total number of lines of code, number of analyzed lines of code (relevant
lines),

number of duplicated lines (the ones that are part of at least one duplica-
tion chain),

the percentage of duplicated lines

elapsed time

N) B

f: \ Statistical data:

Starting path: Ddiplomatexperimentyavalswing
MNumber of analyzed files: 147

Total number of lines: 78645

Mumber of relevant lines: 30977
Number of duplicated lines: 5491 {18%)
Mumber of matrix cells: 309797

Murmber of duplication chains: 1366

Elapsed time: 4495

ok |

Figure 5.2: Statistical Report

At the bottom of the window, there is a status bar, where the user will be
given information about operations (how many duplication chains were found
during a searching operation, current starting path or saving results).

During an operation, which can take between a few milliseconds and several
hours (20 minutes for a 15.3 MB code, comments ignored and 2h15minutes for
the same 15.3 MB project, this time analyzing comments, too), at the right
bottom end of the screen there is a progress bar, which gives a hint about the
how much of the whole operation has been left behind.

5.1.1 Parameters

minLength: minimum accepted length for the duplication chains (in LOC).
It defines a filter for the searching operation, which will eliminate the du-
plication chains considered irrelevant for the current case study.

maxLineBias: the maximum size of the line bias (number of modified,
inserted or deleted lines) between 2 exact chunks within a duplication
chain.

CHAPTER 5. EVALUATION OF THE TOOL 56

e minExactChunk: minimum accepted size of the exact chunks within a
chain.

e ignoreComments: the duplication searching engine can include the com-
ments in its analysis or not (optional, only for C,C++ and Java comments)

5.1.2 Controls
e Set path - sets the path where DuDe is starting its search
e Save results - saves the list of duplication chains in a specified file

e Find duplicates - starts searching for the duplicates according to the spec-
ified path and parameters

e Statistics - gives some statistical information about the results of the last
search operation

e Help - shows this file

e About - version, author, date

5.2 Running from Insider

From Insider, DuDe searches duplications in the method bodies provided by
Insider, and attaches the resulting chains to the corresponding method bodies
as properties. Insider can further use these data to compute software metrics
based on the duplication issue.

5.3 Experiment

I choose the 8 projects written in Java and C that were study cases in Bellon’s
paper on evaluation of clone detecting tools [Bel02]. The purpose of this exper-
iment is to prove the applicability of DuDe towards various projects.

The 8 projects, covering the size range from up to 10 MB, are presented in
fig. 5.3. The C projects have an orange background and the Java projects have
a blue background, so that we can later quickly make the distinction between
them. The C projects and the Java projects are sorted by size (or number of
lines). K LOC column is the number of lines of code, while K SLOC is the
number of lines of code excluding the comments and the blank lines (I refer
them as relevant lines of code) and this is actually the set of lines of code that
DuDe analyzed. The configuration for the searching was set to: minLength =
10, maxLineBias = 2, minExactChunk = 3, ignoreComments = on.

CHAPTER 5. EVALUATION OF THE TOOL o7

Project Name Language Size (MB) [No. of Files K LOC K SLOC
weltab C 0,43 65 11 10
cook C 2,68 590 80 50
snns C 4,82 420 115 77
postgresq| C 9,52 612 235 153
netbeans-javadoc Java 0,68 101 14 9
eclipse-ant Java 1,43 178 35 16
eclipse-jdtcore Java 6,90 741 148 96
j2sdj1.4.0-javax-swing Java 8,39 538 204 102

Figure 5.3: Test projects

The second table (5.4) shows the way the different types of duplication chains
were distributed among the results for every project. The first column is the
total number of found duplication clusters (Total(#)), then the number of du-
plication chains of type exact (E), the percentage of this type, and then the
number of duplication chains and the percentage for the types: modified (M),
insert or delete (I/D) and finally composed (C). I grouped together the types
Insert and Delete, because they are actually the same type. The only thing that
makes the difference is which of the 2 files involved is considered the reference
file and which one is the file where the duplication occurred.

Project Name Total(#) E(#) E(%) M(#) M(%)[I/D#)| 1/D(%) C(#) C(%)
weltab 305 83 27,2 178 58,4 16 53 28 9,2
cook 894 677 75,7 189 21,1 12 1,3 16 1,8
snns 652 386 59,2 211 324 35 54 20 &l
postgresql 485 117 24,1 300 61,9 26 54 42 8,7
netbeans-javadoc 29 10 34,5 19 65,5 0 0,0 0 0,0
eclipse-ant 5 2 40,0 2 40,0 1 20,0 0 0,0
eclipse-jdtcore 361 153 42,4 159 44,0 30 8,3 19 53
j2sdj1.4.0-javax-swing 841 512 60,9 312 37,1 11 1,3 6 0,7

Figure 5.4: The distribution of types

From observing the total number of duplication clusters for all the projects,
we can infer that there is not necessary a relation between the size of a project
and the number of clones that the programmers introduced during the life of
that system. On the other hand, looking at two smallest projects from both
camps (Java and C/C++), it may look as the C projects generally tend to con-
tain more clones that the Java projects, which can be explained by the fact that

CHAPTER 5. EVALUATION OF THE TOOL 58

Java is a younger programming language while C is older and at its time, the
concept of reusing code was far away from the concept we know nowadays.

As T started to validate some of cook’s duplication chains (who seemed at the
first sight to be the duplication champion) I saw that 604 exact chains out of
677 were made of generated code.

An interesting thing is the fact that the C/C++ projects contained every type
of duplication chain, while some of the Java projects missed the Insert/Delete
types and the Composed type.

The eclipse-ant project has the lowest number of duplicates, though it is not
the smallest project. This may mean it is well designed, at least towards the
code duplication.

It is also easy to observe that the types insert/delete and composed come up
much less frequently than the types exact and modified.

A thing I also cared for was the longest duplication cluster for every type (fig.
5.5), for T wanted to dive in more in the habit of copy&pasting.

Project Name Type Exact Modified Insert/Delete | Composed

weltab Exact 256 335 73 235
cook Modified 40 71 42 67
snns Exact 338 148 91 149
postgresg| Exact 1122 130 51 57
netbeans-javadoc Modified 36 88 N/A N/A
eclipse-ant Exact 24 22 17 N/A
eclipse-jdtcore Exact 190 57 70 69
j2sdj1.4.0-javax-swing [Modified 165 188 91 88

Figure 5.5: Longest clusters

The longest duplication out of all projects was one belonging to postgresql,
which was rather an unusual one, so I looked at it in the duplication viewer and
it proved to be a header file that appeared in two different directories (copied
length was 1122). The next longest clone of that project was of length 299, so
the first clone was atypical for that project. The unusual cases can be sometimes
explained by looking at the code.

The type of the longest duplication cluster is either exact or modified. An
explanation for this may be the much higher ratio of such duplications com-
pared with the insert/delete or even with composed. Another sad (but true)
explanation lays in the fact that the copying habits involve mainly copying and

CHAPTER 5. EVALUATION OF THE TOOL 59

pasting the code (and sometimes modifying it to adapt it to the problem) as an
unhealthy way of code reutilization.

The last table presented for this experiment is one that captures some sta-
tistical data (fig. 5.6).

Project Name Coverage (%) | Clones per 1 K SLOC Elapsed time(mm:ss)

weltab 72 27,73 00:06
cook 11 11,18 02:15
snns 15 5,67 05:14
postgresq|l 8 2,06 20:15
netbeans-javadoc 11 2,07 00:05
eclipse-ant 1 0,14 00:14
eclipse-jdtcore 11 2,44 07:56
j2sdj1.4.0-javax-swing 7 4,12 11:23

Figure 5.6: Statistical info

The first column presents a metric called coverage of clone code, which is defined
for all clones in a whole source code, not for one particular clone pair.

Definition 5.1 (Coverage) The percentage of lines that include any portion
of clone (percentage of lines of code contained in at least one duplication chain)
is a metric called coverage.

The second columns is reserved to a the number of clones per K LOC, which
measures the density of code clones on every project. The third column is a
measure for the time efficiency of DuDe towards every project.

From the coverage column it is obvious that the project that is the least ”in-
fected” by clones is eclipse-ant with 1%, and that the presented Java projects are
much better in terms of coverage than the presented C/C++ projects. Although
the size of weltab is almost insignificant compared to the sizes of the other ”com-
petitors”, it has the highest coverage, which is an obvious cry for refactoring
(72% coverage means 3/4 of the lines of code have at least one replica in the
project).

The second measurement (Clones per K LOC) is completing the picture. While
the 27% gives weltab the gold medal, the second place goes to cook and the third
keeps its distance with 5% cnns. Compared to the coverage podium, there is
a strange thing going on: while cook is on the second place on the ”clones per
K LOC” discipline, he does not manage to qualify so bad on coverage. That
means that, although it has a big average of duplication, the clones are not
homogenously distributed, but there are less lines of code duplicated with more
replicas for every clone.

The elapsed times for the analyzed projects show that the searching process

CHAPTER 5. EVALUATION OF THE TOOL 60

is directly influenced by K SLOC factor (number of relevant lines). This is an
expected fact, for the most computing power is needed to build the matrix and
to compare the lines, one by one, with all the others.

5.3.1 Case study

Out of all the projects in this experiment, I chose to analyze some of the results
I got on j2sdk1.4.0-javaz-swing, because it is well-known in the Java world and
there are some interesting results related to it, that shows us that copying &
pasting happens in big software companies, too.

While browsing in the list of duplication chains, the first thing that hit me
was a set of 6 clones, same type (EXACT), same length (105). As I looked
closer it proved that these clones belonged to the same 4 classes, in different
combinations. Than, I saw that this was the case of 1 multiple clone (the same
clone, which appeared in more than 2 classes). So, after analyzing this clone
class (containing 4 instances), the results are:

e we are talking of a multiple clone of type EXACT and length 105

e the clone has got instances in 4 classes: JList (covering lines 2254 to 2358),
JTree(3463-3578), JTable(4320-4489) and table.JTableHeader(830-934)

e the copied code was composed of 11 public, identical methods, disposed
in exactly the same order in all of the 4 classes:
public Color getBackground|()
public void setBackground(Color c)
public Color getForeground()
public void setForeground(Color c)
public Cursor getCursor()
public void setCursor(Cursor c)
public Font getFont()
public void setFont(Font f)
public FontMetrics getFontMetrics(Font f)
public boolean isEnabled()
public void setEnabled(boolean b)

This is an obvious proof of bad design. The simple solution to this problem
could be: creating a class that implements all the common methods and make
all of the involved classes (at least JTree, JTable and JList, which belong to the

CHAPTER 5. EVALUATION OF THE TOOL 61

same package) inherit from that class. Than these methods are written once and
only once, in the superclass. Of course, it is not that simple, because all those
classes already have a superclass (JComponent) and Java offers no support for
multiple inheritance, but there are plenty of other solutions to avoid this ugly
code duplication (the newly created class could be a subclass of JComponent).

As T looked further for such multiple clones, I concentrated my attention on
the classes involved in the last clone and I found another clone of type exact,
smaller in size, but involving the same 4 classes. The second clone:

e another multiple clone of type EXACT and length 48

e the clone has got instances in 4 classes: JList (2417-2464), JTree(3648-
3705), JTable(4607-4654) and table.JTableHeader(1004-1051).

e the copied code comprised 6 public, identical methods, disposed in exactly
the same order in all of the 4 classes:

public void setSize(Dimension d)

public Accessible AccessibleAt(Point p)
public boolean isFocusTraversable()

public void requestFocus()

public void addFocusListener(FocusListener 1)

public void removeFocusListener(FocusListener 1)

I continued my investigation and discovered another clone, this time excluding
the JTree class, still with 23 LOC duplicated. Judging by these results, the 17
methods that are common to those 4 classes suggests that a refactoring would
be worth the effort.

Looking at the names of the authors, it proved that every file involved had
other authors. So it was not one programmer who was reusing his code, it was
rather a known issue and for some reason they left the duplication code. They
are probably aware of this. Maybe it’s time for a system revision.

The described case study showed one possible approach to analyze a system’s
design by looking for clones and to find possible start points for refactoring.
It also showed that even software systems that we rely on in our development
process can suffer from code duplication. Though, it is not that easy to prove
when it comes to software systems that are other than open-source.

CHAPTER 5. EVALUATION OF THE TOOL 62

5.4 DuDe’s Iterative Development

We started to plan the development of DuDe in an iterative, step-by-step
manner. The early version of DuDe had no user interface and it was a non-
configurable version. The starting directory could be specified in the command
line. The results were really hard to validate; for every reported duplication,
the same drill had to be executed: opening both of the involved files in a text
editor and searching for the start and end lines, delimiting the duplicated code
fragments for both files, and finally comparing the results.

The next generations of DuDe had a command interpreter and the possibil-
ity to configure the tool by entering commands: set the starting path, searching
for duplicates, show the results sorted by various attributes, save the results
in a file. These first really usable versions were the ones that started a row
of testings. Some of the assistants from our faculty helped by providing feed-
back of the results DuDe offered. This way, we found and eliminated many bugs.

Still, the problem of validating the clones was not very user-friendly. And,
finally, as I saw DuDe was getting better and better, and the duplicate detect-
ing engine evolved fine, I decided it should have a graphical user interface that
would help examining the list of duplication chains, by sorting it in many ways,
and through the duplicates viewer to have means to validate the clones in a
more pleasant and easy way. At this point I was able to test it against different
projects and to benefit of the code’s proximity: I could validate the duplications
in no time.

Until now, the program was tested against projects written in Java, Visual
Basic, C, C++ and even on some of Shakespeare’s pieces.

Integrating DuDe in the Insider platform was a problem of 3 hours of pair
programming, because of the fact that we knew from the start that the tool will
be integrated later on, and because of Insider’s extendability.

It was an interesting, unique experience, with permanent new requirements
to adapt to, with performance problems when the need to scale up to industrial
needs came up that were solved after hard brainstorming sessions, with disap-
pointing days after a solution proved to be wrong, with enthusiastic moments as
the tool proved its scalability and finally, with the joy of using a program that
I spent so many time working on. With everything that spices up the software
development work.

CHAPTER 5. EVALUATION OF THE TOOL 63

5.5 Summary of accomplished goals

After presenting all the issues that are important for such a tool 3.4, I would
like to review the way DuDe addresses all of them.

1. Regarding scalability, the tool presented in this thesis proved some real
industrial strength. DuDe evolved favorably, by analyzing a software
project with over 600.000 SLOC (lines of code, excluding comments and
blanks) in 32 MB of source code, 1786 source files. The result of the
searching process (with a minLength of 7, a maxLineBias of 2 and minEx-
actChunk of 2) was a list of 52611 duplication chains. The longest chain
measured 401 lines of code, and there were 62 duplication chains with
length over 100.

2. The processor time for the previously presented results was 8h:53m on
a Celeron 1.7GHz processor and 2h:44m on a P4 2.8GHz processor, which
is a totally acceptable processing time on a project that size.

3. And in terms of memory, we have the same situation: the 32 MB, 600 K
SLOC project was analyzed on both computers with 512 MB RAM, which
nowadays is an average value for the RAM memory.

4. The only language dependent part of the tool is reduced to the comment
cleaner, so with the comment cleaning option turned off, DuDe can be ap-
plied to projects written in any programming language (even to any other
text-based file). So, in this terms the tool is as language-independent
as it gets.

5. The problem of catching duplicated code with renamed variables or method
names (parameterized clones is also addressed (with less precision than
a token-based approach, tough) by its ability to detect chains of exact
copied code fragments separated by modified, inserted or deleted lines of
code. With this in mind, a code fragment with renamed variables will
be probably (depending of the number of occurrences and the searching
parameters) detected by DuDe as a duplication chain with modified lines
corresponding to the lines where the variables’ names occur. An example
of this case is described in fig. 5.7.

6. Evaluating the tool in terms of recall and precision, its recall is high
and the precision is lower, when providing the list of candidates. The
real clones can be further validate by visualizing the code in the duplicate
viewer panel and deciding which are real clones and which are false posi-
tives. Some of the reported duplicates, although they are correct detected
clones (they match) but they are not to be considered clones, for instance
a sequence of import statements in java. The tool by itself cannot take this
decision, but it offers aid (visualizing the involved code) for the human
factor to decide whether a portion of duplicated code is a real clone or
not, in this specific context.

CHAPTER 5. EVALUATION OF THE TOOL

PARAMETERIZED
CLONES

tm.nearest_block = 0;
if(LOCAL_VAR == tmp.type)
if(find(tmp)) ok = 1;
else{

tmp.type = FUNCT_PARAM;

._Ii

64

TYPE:
MODIFIED

if(find(tmp)) ok =1;

SIGNATURE:

else{ (] E1.M2.E2.M1.E3

tmp.type = GLOBAL_VAR; ®

tmp.scope_function = ", |

L

Figure 5.7: Catching a duplicate with renamed variables

7. The tool definitely does not show any signs of the splitted duplicates
symptom. DuDe was created as a lightweight, fast tool but also config-
urable. DuDe has a parameter called maxLineBias that tunes the number
of modified, deleted or inserted lines within a duplication chain, meant
exactly to avoid that unpleasant described situation. It can be tuned to
adapt the searching to the goal of the analysis. A threshold for the length
of the duplication chains can also be set and the minimum exact chunk size
within a chain is the parameter that tunes the balance between the dis-
tance between exact chunks and their lengths. In the code preprocessing
phase, a set of lines (considered noise) specified in a file are also searched
and eliminated. By that, the tool can adapt to other elements that might
be considered unwanted, so it is open to modifications.

. DuDe can not only detect the type of the duplication chain, but it has
some more types added compared to the ones described in [Bel02]. In this
thesis, I defined a number of types of duplication chains that serve the best
for our purpose: exact type (type 1 in Bellon’s categorizing), modified type
(catches most of the time the type 2, depending of the frequency of the
renamed element in the code), insert type (type 3), delete type(also type
3, depending on the file considered as reference), composed type (a type
that was not described in that experiment). DuDe can find duplicates
within the same class (or method body) or across-file duplicates.

. Some of the tools did not make correct delimitation of the clones. DuDe
makes correct delimitation of the duplicated code in the files, and this

CHAPTER 5. EVALUATION OF THE TOOL 65

can be verified by checking the beginning and the end of the duplicated
chain to see if the lines match and if the signature is correct and then
check the code portion before the beginning and the code after the end
of the chain to see if indeed id does not match. These limits can be
easily observed in the duplication viewer, because the duplicated code is
highlighted.

Comparing to the tools based on syntax trees, the approach based on compar-
ison of string of characters brings some immediate advantages: lower memory
requirements, higher computing speed, and what seemed to be a real issue
in Bellon’s experiment [Bel02] was the fact that the tools that were using a
language-dependent parser have encountered problems if there were syntactic
errors or even some header file were missing. Because the clone-detecting tool
is not meant to detect syntactic errors (there are enough IDEs to do that), the
only thing that counts here are the duplications. DuDe does not care about
syntactical errors, bugs or even if the analyzed project is a a whole project or
just a part of it, it just finds the duplicate code.

Chapter 6

Conclusion

6.1 Review

Chapter 1 introduced the context in which the software duplications appear,
with the permanently changing requirements and the high costs of the main-
tenance process. Then, a description of the way these clones appear in the
software systems took us through wrong understanding of the “reuse” concept,
wrong abstract data types use and compromising design to favor performance,
even accidental clone introduction. Followed up by the problems associated to
code duplication: difficulties in implementing changes, bugs copied along with
the code. And the way various authors describe the duplication issue. Chapter
1 ends with solution to this problem offered by refactorings meant to eliminate
the replicated code and the urgent need for tool aid in the process of analyzing
software systems.

Chapter 2 makes a journey in the world of object-oriented technology with
starts in the following stations: object-oriented programming and design, de-
tection of design flaws, design patterns, extreme programming. The concepts of
data abstraction, encapsulation, inheritance and polymorphism are described,
because they offer means for the presented solutions to eliminate or prevent
software clones.

Chapter 3 called State Of The Art starts revisiting the first papers on this
issue, back in ’92. Later on, we find out about the current concerns in the
object-oriented software world towards the issue of code clones. The 2 work-
shops on this issue are introduced, along with the papers presented at these
workshops. At the first workshop, a paper approaches a comparison between
the clone detecting tools, a good opportunity to try to see the advantages and
disadvantages brought by every solution. With these in mind, we wrote a list of
desirable attributes that we would like to see on a good duplication detecting
tool.

66

CHAPTER 6. CONCLUSION 67

Chapter 4 makes a description of the approach taken in the current implemen-
tation. While explaining the way this tool finds the duplication chains (most
of the algorithm is described in pseudo-code). There is also a short description
of the evolution in terms of performance, as the need for scaling up rises. For
a better understanding of the system, we presented the architecture in terms
of class diagrams and sequence diagrams (UML). During this description, there
were a few new terms, which are defined in this chapter.

Chapter 5 puts us in the chair of a critic, and starts to analyze what we realized
with this work. We briefly introduce the features of the tool, the integration of
DuDe in a reengineering platform called Insider. Then we present the results
of an experiment, conductes on 8 projects (Java and C/C++). And, finally, we
review the way DuDe accomplished the goals specified as the list of desirable
features from chapter 3.

This final chapter will be a conclusion to this paper, with pros and cons for
the presented tool, with the evaluation of the authors contribution and some
perspectives on future work.

6.2 Pros and Cons

6.2.1 Pros
e program portability (since the entire code is written in Java)

e language independency (the white spaces removing operations do not re-
quire a lexical analyzer)

e flexibility, through parameterizing the searches
e scalability, mainly obtained by dividing the matrix into areas
e performance - good speed performance and efficient memory management

e it can analyze a project even if it contains lexical errors, while a tool based
on syntax tree will fail to build it

e the tools can take decisions by itself - no need for trained users and can
detect duplication otherwise easy to overlook (doesn’t require so much of
the user’s attention)

6.2.2 Cons
e simplicity (no complicated parsing algorithms)

e it’s not capable of detecting variable renames or equivalent structures

CHAPTER 6. CONCLUSION 68

e cannot detect replicated functionality, which doesn’t reflect into replicated
syntax (i. e. a for cycle equivalent to a while cycle).

6.3 Evaluation of Contributions

This work’s apport of originality is brought by defining a number of new con-
cepts:

1. Chain of duplication (or cluster)
2. Signature of a duplication chain

Besides that, the tool proved its ability to handle industrial-size systems, in
acceptable processing times and memory needs. Its strength are:

e scalability
e integrability

e performance

6.4 Future work

Plug-in for a well-known IDE (IDEA or Eclipse). This way, the tool could gain
in popularity.

Possible development on the direction of parsing the code and replacing the
variable names with a generic name. This way, it could also detect parameter-
ized clones (type 2 in Bellon’s classification).

Code highlighting based on the structure and type of the duplication chain.
Studying correlation possibilities between duplication types or structures and

solutions to eliminate the duplication, based on the refactoring mechanisms
described in chapter 2.

Bibliography

[Ale79]

[Bak92]

[Bak95]

[BBC*99]

[Bec00]

[Bel02]

[BYM*98a]

[BYM*98b]

[CHY3]

Christopher Alexander. The Timeless Way of Building. Oxford
University Press, New York, 1979.

Brenda S. Baker. A Program for Identifying Duplicated Code.
Computing Science and Statistics, 24:49-57, 1992.

Brenda S. Baker. On Finding Duplication and Near-Duplication
in Large Software Systems. In Proceedings of the second IEEE
Working Conference on Reverse Engineering (WCRE), pages 86—
95, July 1995.

H. Béar, M. Bauer, O. Ciupke, S. Demeyer, S. Ducasse, M. Lanza,
R. Marinescu, R. Nebbe, O. Nierstrasz, M. Przybilski, T. Richner,
M. Rieger, C. Riva, A. Sassen, B. Schulz, P. Steyaert, S. Tichelaar,
and J. Weisbrod. The FAMOOS Object-Oriented Reengineering
Handbook. European Union under the ESPRIT program Project
no. 21975 (FAMOOS), 1999.

Kent Beck. Eztreme Programming Explained: Embrace Change.
Addison Wesley, 2000.

Stefan Bellon. Vergleich von Techniken zur Erkennung duplizierten
Quellcodes. Master’s thesis, Universitat Stuttgart, September
2002.

Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant” Anna,
and Lorraine Bier. Clone Detection Using Abstract Syntax Trees.
In Proceedings of ICSM. IEEE, 1998.

Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant” Anna,
and Lorraine Bier. Clone Detection Using Abstract Syntax Trees.
In Proceedings ICSM 1998, 1998.

Kenneth Ward Church and Jonathan Isaac Helfman. Dotplot: A
program for exploring self-similarity in millions of lines for text
and code. J. Computational and Graphical Statistics, 2(2):153—
174, June 1993.

69

BIBLIOGRAPHY 70

[DRD99)]

[EMO3]

[FBB+99)

[GHIV95)

[Gri81]

[Hel95)

[Jan88|

[1CJ092]

[J093]

[Joh91]
[KG03a|

[KGO3b]

[KHAMO3]

Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A lan-
guage independent approach for detecting duplicated code. In
Hongji Yang and Lee White, editors, Proceedings ICSM 99 (In-
ternational Conference on Software Maintenance), pages 109-118.
IEEE, September 1999.

Massimiliano Di Penta Ettore Merlo, Giuliano Antoniol. Complex-
ity and feasibility issues in object oriented clone detection. 2003.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Ad-
dison Wesley, 1999.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, Mass., 1995.

Sam Grier. A Tool that Detects Plagiarism in PASCAL Programs.
SIGSCE Bulletin, 13(1), 1981.

Jonathan Helfman. Dotplot Patterns: a Literal Look at Pattern
Languages. TAPOS, 2(1):31-41, 1995.

Hugo T. Jankowitz. Detecting Plagiarism in Student PASCAL
Programs. Computer Journal, 1(31):1-8, 1988.

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar
Overgaard. Object-Oriented Software Engineering — A Use Case
Driven Approach. Addison Wesley/ACM Press, Reading, Mass.,
1992.

Ralph E. Johnson and William F. Opdyke. Refactoring and aggre-
gation. In Object Technologies for Advanced Software, First JSSST
International Symposium, volume 742 of Lecture Notes in Com-
puter Science, pages 264-278. Springer-Verlag, November 1993.

Ralph Johnson. Personal communication. 1991.

Cory Kapser and Michael W. Godfrey. A taxonomy of clones in
source code: The re-engineers mostwanted list. 2003.

Cory Kapser and Michael W. Godfrey. Toward a taxonomy of
clones in source code: A case study. In Proceedings of the First In-
ternational Workshop on Evolution of Large-scale Industrial Soft-
ware Applications (ELISA). IEEE, September 2003.

Holger M. Kienle and Anke Weber Hausi A. Miiller. In the web of
generated ”clones”. 2003.

BIBLIOGRAPHY 71

[KKI02]

[Kri01]

[LPM+97]

[Mar02a]

[Mar02b]

[Mey88]

[MLMO96]

[NSO03]

[RD9S]

[WL03]

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
CCFinder: A multi-linguistic token-based code clone detection sys-
tem for large scale source code. IFEFE Transactions on Software
Engineering, 28(6):654-670, 2002.

Jens Krinke. Identifying similar code with program dependence
graphs. In Proceedings Eigth Working Conference on Reverse En-
gineering (WCRE’01), pages 301-309. IEEE Computer Society,
October 2001.

Bruno Lagué, Daniel Proulx, Ettore M. Merlo, Jean Mayrand, and
John Hudepohl. Assessing the benefits of incorporating function
clone detection in a development process. In Proceedings of ICSM
(International Conference on Software Maintenance). IEEE, 1997.

Radu Marinescu. Measurement and Quality in Object-Oriented De-
sign. Ph.D. thesis, Department of Computer Science, ” Politehnica”
University of Timigoara, 2002.

R.C. Martin. Agile Software Development, Principles, Patterns,
and Practices. Prentice Hall: 1st Edition, 2002.

Bertrand Meyer. Object-oriented Software Construction. Prentice-
Hall, 1988.

Jean Mayrand, Claude Leblanc, and Ettore M. Merlo. Automatic
detection of function clones in a software system using metrics. In
Proceedings of ICSM (International Conference on Software Main-
tenance), 1996.

Eric Nickell and Tan Smith. Extreme programming and software
clones. 2003.

Matthias Rieger and Stéphane Ducasse. Visual detection of dupli-
cated code. In Stéphane Ducasse and Joachim Weisbrod, editors,
Proceedings ECOOP Workshop on Experiences in Object-Oriented
Re-Engineering, number 6/7/98 in FZI Report. Forschungszentrum
Informatik Karlsruhe, 1998.

Andrew Walenstein and Arun Lakhotia. Clone detector evaluation
can be improved: Ideas from information retrieval. 2003.

	Introduction
	Motivation
	Context
	Code duplication. Making of...
	Why is code duplication a bad practice ?
	Solutions
	Desperate need for dedicated software tools?

	Contribution
	Outline

	Fundaments
	Object-Oriented Programming
	Object-Oriented Design
	OCP
	DIP
	LSP
	Putting it all together

	Design Patterns
	Observer
	Chain of Responsibility
	Template Method
	Decorator

	eXtreme Programming
	What is Refactoring?
	Solutions based on refactorings
	Refactorings explained

	State of the Art
	Pioneers in clones field
	Actual concerns on software clones
	First International Workshop
	Second International Workshop

	More tools
	Success of a clone detector

	The Approach
	Algorithm's Principles
	System architecture
	Specific terms

	Evaluation of the tool
	Features
	Parameters
	Controls

	Running from Insider
	Experiment
	Case study

	DuDe's Iterative Development
	Summary of accomplished goals

	Conclusion
	Review
	Pros and Cons
	Pros
	Cons

	Evaluation of Contributions
	Future work

	Bibliography

