A Global Repository for Software System Models

Mircea Lungu
Software Composition Group
University of Bern
Switzerland
Email: mircea@lungu.org

Abstract—A large part of reverse engineering research is based
on building models of target software systems and then analyzing
those models. Due to the shortage of collaboration between
researchers and to the high cost of coordination, the same model
often ends up being built multiple time by different researchers,
which leads to wasted time and resources. Moreover, since many
analysis techniques require a distinct model of every snapshot of
every version of a software system, this duplication happens for
every individual version of the system that needs to be analyzed.
However, building the model for a version of a system with a
version of a parser should only be done once. In this paper we
argue for the construction of a unique repository for models of
software systems.

One added advantage is that for a unique version of a
software system, we can collect multiple models extracted by fact
extractors with multiple techniques and allow a cross-pollination
of analysis techniques by providing a unique place where the
results of such an analysis are available.

I. INTRODUCTION

Parsing a software system to build a model from it is usually
resource intensive and time consuming. In our experience as
researchers, we often tried to sidestep it by asking a colleague
whether he already had a model for a given system or for the
given version of the system that we were interested in. Many
times we were successful inside our own group, but even there
we had to pay the price of time and communication overhead.

Another problem that reverse engineering researchers face
is finding case studies for new techniques and tools. It would
be preferable if there was a central repository of models that
would serve as the library of models where one could easily
go and pick the models that he wants to analyze.

To address these two problems, we propose a global repos-
itory of software system models, which eases both the sharing
and the discovery of existing models. The advantages of such
a repository will be twofold:

o It will provide a common place where researchers can
find case-studies

o It will provide a place where researchers can store and
combine the results of multiple analyses for an individual
system

The contributions of this paper are the following: (1) We
identify the need of a central repository of models; (2) We
propose a structure of the database that supports such a global
model repository; (3) We discuss the problems that could be
associated with such a model repository.

Richard Wettel
Faculty of Informatics
University of Lugano

Switzerland
Email: richard.wettel @usi.ch

In Section 2 we present the architecture of the repository.
In Section 3 we discuss various issues that are associated with
such a global repository. In Section 4 we conclude and look
at future work.

II. THE REPOSITORY META-MODEL

Many types of analysis involve analyzing multiple versions
of a software system. In his thesis, Girba introduced the Hismo
meta-model for representing a software system [?]. In his
meta-model, each structural entity in a system is modeled
distinctly for each version of the system. At the highest
abstraction level, the system is modeled as a sequence of
system versions.

In our repository, the stored models will be associated with
each individual version of a system. As a result, each version
of the system will contain multiple associated models corre-
sponding to various parsers, versions of extractors, and types
of models. The repository will keep track of the information
that is summarized in Figure 1.

The bits of information captured in the repository and
illustrate in Figure 1 are:

o Versioning Control System. Many software systems
have changed their versioning control system during their
history. Therefore, we store the versioning control system
that is used for each of the versions of the system that
are modeled.

o The Previous Version. Normally, the version identifiers
are numerical and the order can be inferred by sorting
them. However, in the cases where a system changes
from one versioning control system to another one, this
ordering might not work anymore. There are also version-
ing control systems where the version identifiers are not
necessarily numbers that can be ordered so in these cases
having the reference of the previous version is needed.

o Meta-model. This is a URI that describes the meta-model
used to represent this model. For a given system version
there can be multiple models built with different meta-
models.

« Fact Extractor. There are usually multiple versions of a
fact extractor. It is important to know which fact extractor
has been used for the generation of a model since there
might be peculiarities about each version of the extractor.

o Contributor. By filling in this field somebody takes
responsibility for the correctness of the data.



Versioning Control One of the known VCSs: Git,
System CVS, Subversion.
A unique identification of a
c system. Can be one or more of
O | System Version the following: date/time of
5® checkout, VCS identification
o 2 number, or release number.
o~ —
Q =
c
- O
k=4 . ) In some cases the order of the
Previous Version . -
versions needs to be specified
VCS URL The URL of the VCS repository.
A link to the description of the
Meta-Model meta-model that describes this
model.
Details about the fact extractor
—_ Fact Extractor that was used to extract this
g model, such as name and version.
]
= Details about the person that
Contributor extracted this model. Email or a
unique username.
Construction Date Date of the creation of the model
. Metrics that summarize the
Properties ’ h
© properties of this model.
=
©
o . The actual information about this
Information
model.
Fig. 1. Informations about each of the model versions stored in the Global

Repository

o Construction Date. Construction date is extra informa-
tion that might be useful for the presentation of the
models.

« Properties. The properties are metrics that summarize the
model. They are useful for building a UI which would
allow searching the model space for case studies that meet
certain criteria (e.g. systems of a certain size).

o Information. The information is the actual payload of
the model. The information in the model needs to be
conforming to the meta-model description.

III. DISCUSSION
A. Choosing the Versions to Import

The repository allows for flexibility regarding the number of
versions that need to be modeled for each system. In fact, for
different systems, different researchers or practitioners might
create different numbers of models based on their needs. Once
a model for a given version is in the repository it can be reused
by the others. If a model is missing, it can be added and then
it becomes available to others.

B. Migrating to different meta-models

Together with the repository we envision a growing body
of tools that will allow model transformations. They will
be useful for the times when a new meta-model appears

and the old models would have to be migrated to the new
representation.

C. Comparing Fact Extractors

It is known that fact extractors do not always agree with
each other, or even with their own previous versions on metrics
for the models that they extract. Having multiple models
associated with a system and a version allows discovering
problems with the fact extractors themselves.

D. Building applications on top of the Repository

Having such a repository will enable various applications
to be built on top of it. One class of applications will
enable the browsing and comparing the many models stored
in the repository. The comparison could be done using various
techniques of visual summarization of the systems:

o Using CodeCity to present the structure and the size of
the systems [?]

o Using architectural views with Softwarenaut to present
the dependency between the modules in the system [?]

e Visualizing the System Complexity to understand the
types of class hierarchies [?]

E. Providing an API for accessing the repository.

The data for each model will be probably stored as files
on disk or as entries in a database. To allow abstracting away
from these details, we will provide a web API for accessing
the models.

FE. Relevance for the Moose Framework

We plan to start populating the repository with FAMIX
models, the way they are modeled in the Moose analysis
framework [?]. Having the repository public will allow show-
casing the large number of systems that have been modeled
and analyzed with Moose.

G. State of the Work

Currently we are in the process of amassing a large number
of systems and building models for them. Although we started
by building FAMIX models, we intend to keep the Repository
open to any other type of meta-model.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we started from the observation that it makes
no sense to build twice the model of a version of a system with
a version of a particular fact extractor. In order to address this
problem we are constructing a global model repository that
will allow for a better collaboration between developers.

Having a global model repository would allow for a better
collaboration between developers and for easier access to case
studies for researchers.



